OPC Historical Data Access Automation Specification 1.0

[image: image1.wmf]
Historical Data Access Automation Interface Standard
Version 1.0

January 26, 2001

Synopsis:
This specification is an interface for developers of OPC clients and OPC Historical Data Access Servers. The specification is a result of an analysis and design process to develop a standard interface to facilitate the development of servers and clients by multiple vendors that shall inter-operate seamlessly together.

This document defines the OPC Historical Data Access OLE Automation interface for developers of OPC clients and OPC Historical Data Access Servers. The purpose of this specification is to provide an OLE Automation interface for the OPC Historical Data Access Server Custom Interface Functionality

	Documentation Type
	Industry Standard Specification
	
	

	
	
	
	

	Title:
	OPC Historical Data Access Automation Specification
	Date:
	January 26, 2001

	
	
	
	

	Version:
	1.0
	Soft
	MS-Word

	
	
	Source:
	OPCHDA_Auto.doc

	
	
	
	

	Author:
	OPC Foundation
	Status:
	Released

	
	
	
	

Trademarks:

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:

This specification requires Windows 95/98 (with DCOM installed), Windows NT 4.0 or later. It is recommended that Windows NT 4.0 machines be run with SP3, or later.

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard OLE/COM interface protocols intended to foster greater interoperability between automation/control applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the “OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods, and properties for servers of real-time information like distributed process systems, programmable logic controllers, smart field devices and analyzers in order to communicate the information that such servers contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use, and provide User with a copy of, the current version of the OPC Materials so long as User abides by the terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in all formats) of such materials in User’s possession must either be destroyed or returned to the OPC Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to make, use, sell or otherwise distribute any products and/or product literature that are compliant with the standards included in the OPC Materials.
All copies of the OPC Materials made and/or distributed by User must include all copyright and other proprietary rights notices include on or in the copy of such materials provided to User by the OPC Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:
User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES) OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS AGREEMENT OR ANY USE OF THE OPC MATERIALS.

GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC Foundation, at its option, if User commits a material breach hereof. Upon any termination of this Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its possession and take such other actions as the OPC Foundation may reasonably request to ensure that no copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to any person or destination that is not authorized to receive them under the export control laws and regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, P.O. Box 140524, Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, the OPC Materials.

 Table of Contents
91
Introduction

1.1
Background
9
1.2
Purpose
9
1.3
Scope
10
1.4
References
10
1.5
Audience
10
2
Architecture
11
2.1
Functional Requirements
11
2.2
OPC HDA Automation Server Object Model
12
2.3
OPC HDA Automation Object Model
12
2.4
Introduction to Exceptions and Events
13
2.4.1
Exceptions
13
2.4.2
Events
13
2.5
Arrays
13
2.6
Collections
13
2.7
Optional Parameters
13
2.8
Method Parameters
14
2.9
Type Library
14
3
About the OPC HDA Automation Wrapper DLL
15
4
OPC HDA Automation Objects & Interfaces
16
4.1
OPCHDAServer Object
16
4.1.1
Summary of Properties
16
4.1.2
Summary of Methods
16
4.1.3
Summary of Events
16
4.1.4
OPCHDAServer Properties
16
4.1.4.1
StartTime
16
4.1.4.2
CurrentTime
17
4.1.4.3
MaxReturnValues
17
4.1.4.4
MajorVersion
17
4.1.4.5
MinorVersion
18
4.1.4.6
BuildNumber
18
4.1.4.7
VendorInfo
18
4.1.4.8
HistorianStatus
18
4.1.4.9
StatusString
19
4.1.4.10
ServerName
19
4.1.4.11
ServerNode
19
4.1.4.12
ClientName
20
4.1.4.13
LocaleID
20
4.1.4.14
CanSyncInsert/Replace/InsertReplace/DeleteRaw/DeleteAtTime
20
4.1.4.15
CanSyncRead/InsertAnnotations
21
4.1.4.16
CanAsyncInsert/Replace/InsertReplace/DeleteRaw/DeleteAtTime
21
4.1.4.17
CanAsyncRead/InsertAnnotations
21
4.1.4.18
OPCHDAItems
22
4.1.5
OPCHDAServer Methods
22
4.1.5.1
GetOPCHDAServers
22
4.1.5.2
Connect
23
4.1.5.3
Disconnect
24
4.1.5.4
GetErrorString
24
4.1.5.5
QueryAvailableLocaleIDs
24
4.1.5.6
GetItemAttributes
25
4.1.5.7
GetAggregates
25
4.1.5.8
CreateBrowser
26
4.1.6
OPCHDAServer Events
27
4.1.6.1
HDAServerShutDown
27
4.2
OPCHDABrowser Object
28
4.2.1
Summary of Properties
28
4.2.2
Summary of Methods
28
4.2.3
OPCHDABrowser Properties
29
4.2.3.1
CurrentPosition
29
4.2.3.2
OPCHDABranches
29
4.2.3.3
OPCHDALeaves
29
4.2.3.4
OPCHDAItems
29
4.2.4
OPCHDABrowser Methods
30
4.2.4.1
MoveUp
30
4.2.4.2
MoveToRoot
30
4.2.4.3
MoveDown
30
4.2.4.4
MoveTo
30
4.2.4.5
GetItemID
31
4.3
OPCHDAItems Object
32
4.3.1
Summary of Properties
32
4.3.2
Summary of Methods
32
4.3.3
Summary of Events
33
4.3.4
OPCHDAItems Properties
33
4.3.4.1
Parent
33
4.3.4.2
Count
33
4.3.5
OPCHDAItems Methods
33
4.3.5.1
Item
33
4.3.5.2
GetOPCHDAItem
34
4.3.5.3
AddItem
34
4.3.5.4
AddItems
34
4.3.5.5
Remove
35
4.3.5.6
RemoveAll
36
4.3.5.7
Validate
36
4.3.5.8
SyncReadRaw
36
4.3.5.9
SyncReadProcessed
38
4.3.5.10
SyncReadAtTime
39
4.3.5.11
SyncReadModified
40
4.3.5.12
SyncReadAttribute
41
4.3.5.13
SyncInsert/Replace/InsertReplace
43
4.3.5.14
SyncDeleteRaw
44
4.3.5.15
SyncDeleteAtTime
45
4.3.5.16
SyncReadAnnotations
46
4.3.5.17
SyncInsertAnnotations
47
4.3.5.18
AsyncReadRaw
48
4.3.5.19
AsyncAdviseRaw
50
4.3.5.20
AsyncReadProcessed
51
4.3.5.21
AsyncAdviseProcessed
52
4.3.5.22
AsyncReadAtTime
54
4.3.5.23
AsyncReadModified
55
4.3.5.24
AsyncReadAttribute
57
4.3.5.25
AsyncCancelRead
58
4.3.5.26
AsyncInsert/Replace/InsertReplace
58
4.3.5.27
AsyncDeleteRaw
60
4.3.5.28
AsyncDeleteAtTime
61
4.3.5.29
AsyncCancelUpdate
63
4.3.5.30
AsyncReadAnnotations
63
4.3.5.31
AsyncInsertAnnotations
64
4.3.5.32
AsyncCancelAnnotations
66
4.3.5.33
AsyncPlaybackRaw
66
4.3.5.34
AsyncPlaybackProcessed
68
4.3.5.35
AsyncCancelPlayback
69
4.3.6
OPCHDAItems Events
70
4.3.6.1
DataChange
70
4.3.6.2
AsyncReadComplete
71
4.3.6.3
AsyncReadModifiedComplete
71
4.3.6.4
AsyncReadAttributesComplete
72
4.3.6.5
AsyncReadAnnotationsComplete
73
4.3.6.6
AsyncInsertAnnotationsComplete
73
4.3.6.7
Playback
74
4.3.6.8
AsyncUpdateComplete
75
4.3.6.9
AsyncCancelComplete
75
4.4
OPCHDAItem Object
77
4.4.1
Summary of Properties
77
4.4.2
Summary of Methods
77
4.4.3
OPCHDAItem Properties
77
4.4.3.1
Parent
77
4.4.3.2
ClientHandle
77
4.4.3.3
ServerHandle
77
4.4.3.4
ItemID
78
4.4.4
OPCHDAItem Methods
78
4.5
OPCHDAHistory Object
79
4.5.1
Summary of Properties
79
4.5.2
Summary of Methods
79
4.5.3
OPCHDAHistory Properties
79
4.5.3.1
Count
79
4.5.4
OPCHDAHistory Methods
80
4.5.4.1
Item
80
4.6
OPCHDAValue Object
81
4.6.1
Summary of Properties
81
4.6.2
OPCHDAValue Properties
81
4.6.2.1
TimeStamp
81
4.6.2.2
DataValue
81
4.6.2.3
Quality
81
4.7
OPCHDAEntry Object
82
4.7.1
Summary of Properties
82
4.7.2
OPCHDAEntry Properties
82
4.7.2.1
TimeStamp, DataValue, Quality
82
4.7.2.2
EntryTime
82
4.7.2.3
EntryType
82
4.7.2.4
User
82
5
OPC HDA Automation Definitions and Symbols
84
5.1
OPCHDAServerState
84
5.2
OPCHDAOperatorCode
84
5.3
OPCHDAEditType
84
5.4
OPCHDAErrors
84
5.5
OPCHDAAggregate
85
5.6
OPCHDAQuality
85
5.7
OPCHDAAttribute
86
6
Appendix A - OPC Automation Error Handling
87
7
Appendix B - OPC HDA Automation IDL Specification
89
8
Appendix C- Notes On Automation Data Types
104
1
Introduction

1.1 Background

A standard mechanism for communicating to numerous data sources, either devices on the factory floor, or a database in a control room is the motivation for this specification. The standard mechanism would consist of a standard automation interface targeted to allow Visual Basic applications, as well as other automation enabled applications to communicate to the above named data sources.

Manufacturers need to access data from the plant floor and integrate it into their existing business systems. Manufacturers must be able to utilize off the shelf tools (SCADA Packages, Databases, spreadsheets, etc.) to assemble a system to meet their needs. The key is open and effective communication architecture concentrating on data access, and not the types of data. We have addressed this need by architecting and specifying a standard automation interface to the OPC Historical Data Access Custom interface to facilitate the needs of applications that utilize an automation interface to access plant floor data.

1.2 Purpose

What is needed is a common way for automation applications to access data from any data source like a device or a database.

The OPC Historical Data Access Automation defines a standard by which automation applications can access process data. This interface provides the same functionality as the custom interface, but in an “automation friendly” manner.

Given the common use of Automation to access other software environments (e.g.: RDBMS, MS Office applications, WWW objects), this interface has been tailored to ease application development, without sacrificing functionality defined by the Custom interface.

The figure below shows an Automation client calling into an OPC Historical Data Access Server using a 'wrapper' DLL. This wrapper translates between the custom interface provided by the server and the automation interface desired by the client. Note that in general the connection between the Automation Client and the Automation Server will be 'In Process' while the connection between the Automation Server and the Custom Server may be either In Process, Local or Remote.

[image: image2.wmf]Automation Client

OPC Automation Wrapper

OPC Custom Interface Server

COM / DCOM

Figure 1-1. Custom and Automation Client Applications Interfacing to OPC HDA Servers

1.3 Scope

This document represents the initial release of the OPC HDA Automation specification. It is assumed that the reader is familiar with the information provided on the OPC Historical Data Access Custom Interface Specification. That document provides an Overview of the OPC functionality as well as detailed descriptions of the behavior of the various functions.

We have deliberately not duplicated that information in an attempt to maintain consistency.

1.4 References

Kraig Brockschmidt, Inside OLE, Second Edition, Microsoft Press, Redmond, WA, 1995.

Microsoft Systems Journal, Q&A, April 1996, pp. 89-101.

OLE Automation Programming Reference, Microsoft Press, Redmond, WA, 1996.

OLE 2 Programming Reference, Vol. 1, Microsoft Press, Redmond, WA, 1994.

OPC Historical Data Access Custom Interface Standard, Version 2.0, OPC Foundation 1998.

1.5 Audience

This specification is intended as reference material for developers of OPC Automation Clients that require the functionality of the OPC Historical Data Access Custom Interface.

The developer needs some knowledge of basic Automation concepts and terminology.

2 Architecture

The fundamental design goal is that this interface is intended to work as a 'wrapper' for existing OPC Historical Data Access Custom Interface Servers, providing an automation friendly mechanism to the functionality provided by the custom interface.

2.1 Functional Requirements

· The automation interface provides nearly all of the functionality of the required and optional Interfaces in the OPC Historical Data Access Custom Interface. If the OPC Historical Data Access Custom server supports the interface, the functions and properties at the automation level will work. Automation interfaces generally do not support optional capabilities in the same way that the custom interface does. If the underlying custom interface omits some optional functionality then the corresponding automation functions and properties will exhibit some reasonable default behavior as described in more detail later in this document.

· The interfaces are fully supported by VC++ and Visual Basic 5.0. They allow any application which has an OLE Automation Interface (e.g. VB, VC++, and VBA enabled applications) to access the OPC Interface, according to the limitations of the respective application.

· The interface described in this specification specifically does NOT support VBScript or Java Script. A separate wrapper could be developed to accommodate the needs of VBScript and Java Script. However such an effort is outside the scope of this specification.

2.2 OPC HDA Automation Server Object Model

Figure 2-1. Automation Object Hierarchy

	Object
	Description

	OPCHDAServer
	An instance of an OPC HDA Server. You must create an OPCHDAServer object before you can get references to other objects. It contains the OPCHDAItems collection.

	OPCHDAItems
	An Automation collection containing all of the OPCHDAItem objects this client has created within the scope of the OPCHDAServer object that the Automation Application has created.

	OPCHDAItem
	An Automation object that maintains the item’s definition. Note the Custom Interface does not provide a separate Item Object.

	OPCHDABrowser
	An object that browses item names in the server’s configuration.

	OPCHDAHistory
	An Automation collection containing a series of either OPCHDAValue or OPCHDAEntry objects, representing the historical values of some item.

	OPCHDAValue
	An object that represents a discrete historical value for an item or an attribute.

	OPCHDAEntry
	An object that extends the OPCHDAValue object to include additional information

2.3 OPC HDA Automation Object Model

The OPCHDAServer object provides a way to access (read/write) or communicate to a set of historical data sources. The types of sources available are a function of the server implementation.

An OPC Automation client connects to an OPC Automation Server that communicates to the underlying data source (e.g. OPC Historical Data Access Custom Servers) through the functionality provided by the automation objects described here.

The OPCHDAServer provides an (OPCHDAItems) automation collection object to maintain a collection of OPCHDAItem objects. The OPCHDAItem object provides a connection to a single data item in the underlying data source.

2.4 Introduction to Exceptions and Events

2.4.1 Exceptions

Most properties and methods described here communicate with an OPC Custom Server. In OLE Automation, there is no easy way to return an error when accessing a property. The best way to resolve this is for the automation server to generate an exception if such an error occurs in the underlying data source. This means that the client needs to have exception logic in place to handle errors.

Errors that occur when setting a property are reported using the standard Visual Basic Err object. Refer to Appendix A - OPC Automation Error Handling for more details on handling errors.

2.4.2 Events

The automation interface supports the event notification mechanism that is provided with Visual Basic 5.0.

The Automation server triggers events in response to Async calls.

The implementation assumes that the Automation Client is equipped to deal with these events.

2.5 Arrays

By convention, the OPC Automation interface assumes that arrays are 1 based. If an array is passed to a function that is larger than the Count or NumItems parameter, only Count or NumItems elements will be used, starting at index 1.

This only applies to parameters for functions and events within the automation interface. This does not apply to item values, where the data type for the item value is itself an array.

To avoid errors it is suggested that VB code use “Option Base 1”.

2.6 Collections

OLE Automation collections are objects that support Count, Item, and a hidden property called _NewEnum. Any object that has these properties as part of the interface can be called a collection. In VB, a collection can be iterated using either of two idioms.

The first method explicitly uses Count and Item to index the elements of the collection.

For I = 1 To object.Count

element = object.Item (I)

‘or…

element = object(I)
Next I

The second method iterates through the available items using the hidden _NewEnum function:

For Each element In object

‘do something with element
Next element

The For Each method of iterating a collection is faster than the explicit Item method.

Item can also be used to access a particular index, such as Item(3). It doesn’t need to be used within a loop.

2.7 Optional Parameters

Optional parameters are denoted by the keyword “Optional”. Optional parameters may be omitted from a method call if the default behavior is acceptable. OLE Automation requires that optional parameters be Dim’d as Variant, though they may hold a string, array, etc.

2.8 Method Parameters

Method parameters are assumed to be passed ByVal unless specified to be ByRef. ByRef parameters get filled in by the method and passed back.

2.9 Type Library

VB uses the OPC Automation Type Library to define the following interfaces. Make sure that (in Visual Basic 5.0) Properties | References has “OPC HDA Automation 1.0” checked.

3 About the OPC HDA Automation Wrapper DLL

The OPC foundation has provided a reference sample of the Historical Data Access Automation interface for the OPC foundation members to use in providing an automation interface to OPC data access custom interface servers. The reference sample is provided as a DLL complete with the Visual C++ source code. Vendors may provide the DLL directly with their product.

Vendors that choose to modify the source code, or even just build the DLL from the source code(unchanged) must do the following prior to including or shipping the DLL.

1. The name of the OPC automation DLL must be changed from OPCHDAAuto.dll to a vendor specific unique name.

2. The name of the OPC automation IDL(opchdaauto.idl) file should be changed to a vendor specific unique name.

3. The helpstring ("OPC HDA Automation 1.0") in the IDL file must be changed to reflect your vendor specific OPC automation interface. This is the name that shows up in the Automation Type Library. Visual Basic applications that use your vendor build OPC automation interface DLL will include the DLL by using the type library.

4. All guid’s in the IDL file must be changed to new values that are generated by using the Guidgen tool. This is required to prevent the vendor built automation interface library from being confused with another vendors built automation library or the OPC foundation provided automation library.

The vendor is encouraged to not change the existing automation interfaces. If additional functionality is desired, a new object and interface should be added and should replicate all the functionality of the existing object that is being added to.

4 OPC HDA Automation Objects & Interfaces

4.1 OPCHDAServer Object

	Description
	A client creates the OPCHDAServer Automation object. The client then 'connects' it to an OPC Historical Data Access Custom Interface (see the 'Connect' method). The OPCHDAServer object can now be used to obtain general information about an OPC server and to create and manipulate the collection of OPCItem objects.'

	Syntax
	OPCHDAServer

	Remarks
	The WithEvents syntax enables the object to support the declared events for the particular object. For the OPCHDAServer, the only event defined is the HDAServerShutDown. The OPCItems collection (described later) has all the events associated with the Asynchronous methods.

	Example
	Dim WithEvents AnOPCHDAServer As OPCHDAServer
Set AnOPCHDAServer = New OPCHDAServer

4.1.1 Summary of Properties

	StartTime
	CurrentTime
	MaxReturnValues

	MajorVersion
	MinorVersion
	BuildNumber

	VendorInfo
	HistorianStatus
	StatusString

	ServerName
	ServerNode
	ClientName

	LocaleID
	CanSyncInsert
	CanSyncReplace

	CanSyncInsertReplace
	CanSyncDeleteRaw
	CanSyncDeleteAtTime

	CanSyncReadAnnotations
	CanSyncInsertAnnotations
	CanAsyncInsert

	CanAsyncReplace
	CanAsyncInsertReplace
	CanAsyncDeleteRaw

	CanAsyncDeleteAtTime
	CanAsyncReadAnnotations
	CanAsyncInsertAnnotations

	OPCHDAItems
	
	

4.1.2 Summary of Methods

	GetOPCHDAServers
	Connect
	Disconnect

	GetErrorString
	QueryAvailableLocaleIDs
	GetItemAttributes

	GetAggregates
	CreateBrowse
	

4.1.3 Summary of Events

	HDAServerShutDown
	
	

4.1.4 OPCHDAServer Properties

4.1.4.1 StartTime

	Description
	(Read-only) Returns the time when the historian started running. This is the start time of the server that the client has specified to connect to. Multiple Clients connecting to the same server can be assured that each client will read the same value from the server for this property.

	Syntax
	StartTime As Date

	Remarks
	The automation server is expected to use the custom interface GetHistorianStatus () to obtain the values for this property as well as many of the other properties defined as properties of the OPCHDAServer. An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim AnOPCHDAServerTime As Date
AnOPCHDAServerTime = AnOPCHDAServer.StartTime

4.1.4.2 CurrentTime

	Description
	(Read-only) Returns the current time at the historian location. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus () interface.

	Syntax
	CurrentTime As Date

	Remarks
	An error occurs if the client has not connected to a Historial Data Access Server via the Connect method.

	Example
	Dim AnOPCHDAServerTime As Date
AnOPCHDAServerTime = AnOPCHDAServer.CurrentTime

4.1.4.3 MaxReturnValues

	Description
	(Read-only) Returns the maximum number of values that can be returned by the server on a per item basis. A value of zero indicates that the server forces no limit on the number of values it can return. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus() interface.

	Syntax
	MaxReturnValues As Long

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim AnOPCHDAMaxReturnValues As Long
AnOPCHDAMaxReturnValues = AnOPCHDAServer.MaxReturnValues

4.1.4.4 MajorVersion

	Description
	(Read-only) Returns the major part of the server version number (e.g. the “1” in version 1.32). When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus() interface.

	Syntax
	MajorVersion As Integer

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim AnOPCHDAServerMajorVersion As String
AnOPCHDAServerMajorVersion = Str(AnOPCHDAServer.MajorVersion)

4.1.4.5 MinorVersion

	Description
	(Read-only) Returns the minor part of the server version number (e.g. the “32” in version 1.32). When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus () interface.

	Syntax
	MinorVersion As Integer

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim AnOPCHDAServerMinorVersion As String
AnOPCHDAServerMinorVersion = Str(AnOPCHDAServer.MinorVersion)

4.1.4.6 BuildNumber

	Description
	(Read-only) Returns the build number of the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus () interface.

	Syntax
	BuildNumber As Integer

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim BuildNumber as Integer
BuildNumber = AnOPCHDAServer.BuildNumber

4.1.4.7 VendorInfo

	Description
	(Read-only) Returns the vendor information string for the server. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus () interface.

	Syntax
	VendorInfo As String

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim info As String
info = AnOPCHDAServer.VendorInfo

4.1.4.8 HistorianStatus

	Description
	(Read-only) Returns the historian’s status, which will be one of the OPCHDAServerStatus values:

	Syntax
	HistorianStatus As Long

	Setting
	Description

	OPCHDAUp
	The historian is running.

	OPCHDADown
	The historian is not running.

	OPCHDAIndeterminate
	The status of the historian is indeterminate. See the StatusString property for further information.

	Remarks
	These are the server states that are described in the OPC Historical Data Access Custom Interface Specification, and returned by an OPC server via the custom interface. Refer to the OPC Historical Data Access Custom Interface Specification IOPCHDAServer::GetHistorianStatus() for more details. When you access this property, you will get the value that the automation server has obtained from the custom server via the GetHistorianStatus () interface.
An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim HistorianStatus As Long
HistorianStatus = AnOPCHDAServer.HistorianStatus

4.1.4.9 StatusString

	Description
	(Read only) Returns a string explaining the historian’s status when the HistorianStatus property is OPCHDAIndeterminate.

	Syntax
	StatusString As String

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim StatusString As String
StatusString = AnOPCHDAServer.StatusString

4.1.4.10 ServerName

	Description
	(Read-only) Returns the server name of the server that the client connected to via Connect().

	Syntax
	ServerName As String

	Remarks
	When you access this property, you will get the value that the automation server has cached locally.
The ServerName is empty if the client is not connected to a Historical Data Access Server.

	Example
	Dim info As String
info = AnOPCHDAServer.ServerName

4.1.4.11 ServerNode

	Description
	(Read-only) Returns the node name of the server that the client connected to via Connect(). When you access this property, you will get the value that the automation server has cached locally.

	Syntax
	ServerNode As String

	Remarks
	The ServerNode is empty if the client is not connected to a Historical Data Access Server.
The ServerNode will be empty if no host name was specified in the Connect method.

	Example
	Dim info As String
info = AnOPCHDAServer.ServerNode

4.1.4.12 ClientName

	Description
	(Read/Write) This property allows the client to optionally register a client name with the server. This is included primarily for debugging purposes. The recommended behavior is that the client set his Node name and EXE name here.

	Syntax
	ClientName As String

	Remarks
	Recommended to put NodeName and ClientName in the string, separated by a semi-colon (;). Refer to the example below for suggested syntax

	Example
	‘(getting the property):
Dim info As String
info = AnOPCHDAServer.ClientName

 ‘(setting the property):
 AnOPCHDAServer.ClientName = “NodeName;c:\programfiles\vendor\someapplication.exe”

4.1.4.13 LocaleID

	Description
	(Read/Write) This property identifies the locale, which may be used to localize strings returned from the server. . This LocaleID will be used by the GetErrorString method on this interface

	Syntax
	LocaleID As Long

	Remarks
	It should also be used as the ‘default’ LocaleID by any other server functions that are affected by LocaleID.
An error occurs if the client has not connected to a Data Access Server via the Connect method.

	Example
	 ‘(getting the property)::
Dim LocaleID As Long
LocaleID = AnOPCHDAServer.LocaleID
 ‘(setting the property):
 AnOPCHDAServer.LocaleID = LocaleID

4.1.4.14 CanSyncInsert/Replace/InsertReplace/DeleteRaw/DeleteAtTime

	Description
	(Read-only) Returns the synchronous update capabilities of the historian.

	Syntax
	CanSyncInsert As Long
CanSyncReplace As Long
CanSyncInsertReplace As Long
CanSyncDeleteRaw As Long
CanSyncDeleteAtTime As Long

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim CanSyncInsert As Long
Dim CanSyncReplace As Long
Dim CanSyncInsertReplace As Long
Dim CanSyncDeleteRaw As Long
Dim CanSyncDeleteAtTime As Long
CanSyncInsert = AnOPCHDAServer.CanSyncInsert
CanSyncReplace = AnOPCHDAServer.CanSyncReplace
CanSyncInsertReplace = AnOPCHDAServer.CanSyncInsertReplace
CanSyncDeleteRaw = AnOPCHDAServer.CanSyncDeleteRaw
CanSyncDeleteAtTime = AnOPCHDAServer.CanSyncDeleteAtTime

4.1.4.15 CanSyncRead/InsertAnnotations

	Description
	(Read-only) Returns the synchronous annotation capabilities of the server.

	Syntax
	CanSyncReadAnnotations As Long
CanSyncInsertAnnotations As Long

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim CanSyncReadAnnotations As Long
Dim CanSyncInsertAnnotations As Long
CanSyncReadAnnotations = AnOPCHDAServer.CanSyncReadAnnotations
CanSyncInsertAnnotations = AnOPCHDAServer.CanSyncInsertAnnotations

4.1.4.16 CanAsyncInsert/Replace/InsertReplace/DeleteRaw/DeleteAtTime

	Description
	(Read-only) Returns the asynchronous update capabilities of the historian.

	Syntax
	CanAsyncInsert As Long
CanAsyncReplace As Long
CanAsyncInsertReplace As Long
CanAsyncDeleteRaw As Long
CanAsyncDeleteAtTime As Long

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim CanAsyncInsert As Long
Dim CanAsyncReplace As Long
Dim CanAsyncInsertReplace As Long
Dim CanAsyncDeleteRaw As Long
Dim CanAsyncDeleteAtTime As Long
CanAsyncInsert = AnOPCHDAServer.CanAsyncInsert
CanAsyncReplace = AnOPCHDAServer.CanAsyncReplace
CanAsyncInsertReplace = AnOPCHDAServer.CanAsyncInsertReplace
CanAsyncDeleteRaw = AnOPCHDAServer.CanAsyncDeleteRaw
CanAsyncDeleteAtTime = AnOPCHDAServer.CanAsyncDeleteAtTime

4.1.4.17 CanAsyncRead/InsertAnnotations

	Description
	(Read-only) Returns the asynchronous annotation capabilities of the server.

	Syntax
	CanAsyncReadAnnotations As Long
CanAsyncInsertAnnotations As Long

	Remarks
	An error occurs if the client has not connected to a Historical Data Access Server via the Connect method.

	Example
	Dim CanAsyncReadAnnotations As Long
Dim CanAsyncInsertAnnotations As Long
CanAsyncReadAnnotations = AnOPCHDAServer.CanAsyncReadAnnotations
CanAsyncInsertAnnotations = AnOPCHDAServer.CanAsyncInsertAnnotations

4.1.4.18 OPCHDAItems

	Description
	(Read only) A collection of OPCHDAItem objects. This is the default property of the OPCHDAServer object.

	Syntax
	OPCHDAItems As OPCHDAItems

	Example
	‘(explicit property specification):

Dim items As OPCHDAItems

Set items = AnOPCHDAServer.OPCHDAItems

 ‘(using the default specification):

Dim items As OPCHDAItems

Set items = AnOPCHDAServer

4.1.5 OPCHDAServer Methods

4.1.5.1 GetOPCHDAServers

	Description
	Returns the names (ProgID’s) of the registered OPC HDA Servers. Use one of these ProgIDs in the Connect method. The names are returned as an array of strings.

	Syntax
	GetOPCHDAServers(Optional Node As Variant) As Variant

	Part
	Description

	Node
	The Node name provides the mechanism to specify the remote node where you want the automation server to give you the list of all the registered OPC servers.

	Remarks
	Refer to the OPC Historical Data Access Custom Interface Standard for specific registry requirements for the custom servers.

Node is optional. The use of a node name makes use of DCOM to access another computer. Acceptable node names are UNC names (“Server”), or DNS names (“server.com”, “www.vendor.com”, or “180.151.19.75”).

	Example
	‘ getting the registered OPC HDA Servers (the real OPC servers and adding them to a standard VB listbox).

Dim AllOPCHDAServers As Variant

AllOPCHDAServers = AnOPCHDAServer.GetOPCHDAServers

For i = LBound(AllOPCHDAServers) To UBound(AllOPCHDAServers)

 listbox.AddItem AllOPCHDAServers(i)

Next i

4.1.5.2 Connect

	Description
	Must be called to establish connection to an OPC Historical Data Access Server (that implements the custom interface).

	Syntax
	Connect (ProgID As String, Optional Node As Variant)

	Part
	Description

	ProgID
	The ProgID is a string that uniquely identifies the registered real OPC Historical Data Access Server (that implements the custom interface).

	Node
	The Node name can specify another computer to connect using DCOM.

	Remarks
	Each instance of an OPC Automation Server is “connected” to an OPC Historical Data Access Server (which implements the custom interface).

Node is optional. The use of a node name makes use of DCOM to access another computer. Acceptable node names are UNC names (“Server”), or DNS names (“server.com”, “www.vendor.com”, or “180.151.19.75”).

Calling this function will result in the automation wrapper calling CoCreateInstanceEx to create a Historical Data Access Custom server (specified by ProgID) on the specified machine (Node).

If this function is called a second time without calling explicitly calling disconnect the automation wrapper will automatically disconnect the existing connection.

	See Also
	Use the GetOPCHDAServers method to find the legal ProgIDs.

	Example
	‘ Connect to the first registered OPCHDAServer returned from the GetOPCHDAServers

Dim AllOPCHDAServers As Variant

AllOPCHDAServers = AnOPCHDAServer.GetOPCHDAServers

AnOPCHDAServer.Connect(AllOPCHDAServers(1))

 ‘Connect to a specific server on some remote node

Dim ARealOPCHDAServer As String

Dim ARealOPCNodeName As String

ARealOPCHDAServer = “VendorX.HistoricalDataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCHDAServer.Connect (ARealOPCHDAServer, ARealOPCNodeName)

4.1.5.3 Disconnect

	Description
	Disconnects from the OPC server.

	Syntax
	Disconnect()

	Remarks
	This allows you to disconnect from a server and then either connect to another server, or remove the object. It is it is good programming practice for the client application to explicitly remove the objects that it created (including all OPCHDAItems) using the appropriate automation method. Calling this function will remove all of the items and release all references to the underlying OPC Custom Server.

	Example
	AnOPCHDAServer.Disconnect

4.1.5.4 GetErrorString

	Description
	Converts an error number to a readable string. The server will return the string in the Locale that is specified in the server level LocaleID property. Refer to the properties of the OPC HDA Server for setting and getting the LocaleID property.

	Syntax
	GetErrorString(ErrorCode As Long) As String

	Part
	Description

	ErrorCode
	Server specific error code that the client application had returned from an interface function from the server, and for which the client application is requesting the server’s textual representation.

	Example
	Dim AnOPCHDAServerErrorString As String

‘ for this sample, assume while adding some items, we detected that one of the items was ‘invalid. Not all code included for clarity reasons.

AnOPCHDAItemCollection.AddItems AddItemCount, AnOPCHDAItemIDs, AnOPCHDAItemServerHandles, AnOPCHDAItemErrors
’Get the error string and display it to tell the user why the item could not be added

AnOPCHDAServerErrorString = AnOPCHDAServer.GetErrorString(AnOPCHDAItemErrors (index))

‘and more code

ErrorBox.Text = AnOPCHDAServerErrorString

‘and more code

4.1.5.5 QueryAvailableLocaleIDs

	Description
	Return the available LocaleIDs for this server/client session. The LocaleIDs are returned as an array of longs.

	Syntax
	QueryAvailableLocaleIDs () As Variant

	Example
	Dim LocaleID As Variant

Dim AnOPCTextSting as String

AnOPCHDAServerLocaleID = AnOPCHDAServer.QueryAvailableLocaleIDs()

For i = LBound(LocaleID) To UBound(LocaleID)

AnOPCTextSting = LocaleIDToString(LocaleID(i))

 listbox.AddItem AnOPCTextSting

Next i

4.1.5.6 GetItemAttributes

	Description
	Returns the item attributes supported by the server.

	Syntax
	GetItemAttributes (Count As Long, AttributeIDs() as Long, Names() As String, Descriptions() As String, DataTypes() As Integer)

	Part
	Description

	Count
	The number of attributes returned.

	AttributeIDs
	The numeric identifiers of the attributes.

	Names
	The names of the attributes.

	Descriptions
	The descriptions of the attributes.

	DataTypes
	The data types of the attributes.

	Example
	Dim Count As Long
Dim AttributeIDs() As String
Dim Names() As String
Dim Descriptions() As String
Dim DataTypes() As Integer

AnOPCHDAServer.GetItemAttributes (Count, AttributeIDs, Names, Descriptions, DataTypes)

For i = 1 To Count
 listbox.AddItem AttributeIDs(i) & “ “ & Names(i) & “ “ & Descriptions(i)
Next i

4.1.5.7 GetAggregates

	Description
	Returns the aggregates supported by the server.

	Syntax
	GetAggregates (Count As Long, AggregateIDs() as Long, Names() As String, Descriptions() As String)

	Part
	Description

	Count
	The number of aggregates returned.

	AggregateIDs
	The numeric identifiers of the aggregates.

	Names
	The names of the aggregates.

	Descriptions
	The descriptions of the aggregates.

	Example
	Dim Count As Long
Dim AggregateIDs() As String
Dim Names() As String
Dim Descriptions() As String
Dim DataTypes() As Integer

AnOPCHDAServer.GetAggregates (Count, AggregateIDs, Names, Descriptions)

For i = 1 To Count
 listbox.AddItem AggregateIDs(i) & “ “ & Names(i) & “ “ & Descriptions(i)
Next i

4.1.5.8 CreateBrowser

	Description
	Creates an OPCHDABrowser object, optionally with filter criteria.

	Syntax
	CreateBrowser (NumCriteria As Long = 0, Optional AttributeIDs, Optional OperatorCodes, Optional Filters, Optional Errors) As OPCHDABrowser

	Part
	Description

	NumCriteria
	The number of filter criteria.

	AttributeIDs
	The attribute ID numbers to filter on.

	OperatorCodes
	The operator code to use for the filter (one of OPCHDAOperatorCode).

	Filters
	Filter criteria for each attribute.

	Errors
	Returned list of error codes indicating the validity of the filters.

	Remarks
	If no filter criteria are passed to the method, then a browse object with the default criteria “OPCHDAItemID = *” will be created.

	Example
	‘ with filter criteria
Dim AttributeIDs(1) As Long
Dim OperatorCodes(1) As Long
Dim Filters(1) As Variant
Dim Errors As Variant
Dim AnOPCHDABrowser As OPCHDABrowser

AttributeIDs(1) = OPCHDADataType
OperatorCodes(1) = OPCHDAEqual
Filters(1) = vbInteger

Set AnOPCHDABrowser = AnOPCHDAServer.CreateBrowse (1, AttributeIDs, OperatorCodes, Filters, Errors)

‘ without filter criteria
Set AnOPCHDABrowser = AnOPCHDAServer.CreateBrowse()

4.1.6 OPCHDAServer Events

4.1.6.1 HDAServerShutDown

	Description
	The HDAServerShutDown event is fired when the server is planning on shutting down and wants to tell all the active clients to release any resources. The client provides this method so that the server can request that the client disconnect from the server. The client should remove all items.

	Syntax
	HDAServerShutDown (Reason As String)

	Part
	Description

	ServerReason
	An optional text string provided by the server indicating the reason for the shutdown.

	Example
	Dim WithEvents AnOPCHDAServer As OPCHDAServer

Dim ARealOPCHDAServer As String

Dim ARealOPCNodeName As String

Set AnOPCHDAServer = New OPCHDAServer ‘ note we need to specify an example to facilitate creating an object that is

‘dimensioned with events

ARealOPCHDAServer = “VendorX.HistoricalDataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCHDAServer.Connect(ARealOPCHDAServer, ARealOPCNodeName)

Private Sub AnOPCHDAServer_HDAServerShutDown(ByRef aServerReason As String)

‘ write your client code here to let go of the server

End Sub

4.2 OPCHDABrowser Object

	Description
	The OPCHDABrowser object allows client applications to explore the address space of a Historical Data Access Custom Server.

	Syntax
	OPCHDABrowser

	Remarks
	The filter criteria established when the object is first created in CreateBrowser affect the contents of the OPCHDALeaves and OPCHDAItems properties. The filter criteria let the client request a subset of the address space.
Servers can have either a flat or hierarchical name space. When the namespace is flat, the OPCHDItems property contains the entire set of names in the server.
Hierarchical browsing is a two step process. First, the browse position is set using a Move method, then the names are retreived from the OPCHDABranches, Leaves, and Items properties. The OPCHDABranches property contains the branches below the current position. Calling MoveDown with one of these branch names moves the position to that branch. Calling MoveUp moves up one level. Calling MoveToRoot moves all the way to the top level. From any position, branches and leaves can be browsed.

	Example
	Dim AnOPCHDAServer As OPCHDAServer
Dim ARealOPCHDAServer As String
Dim ARealOPCNodeName As String
Dim AnOPCHDAServerBrowser As OPCHDABrowser
Dim Items() As String

Set AnOPCHDAServer = New OPCHDAServer
ARealOPCHDAServer = “VendorX.HistoricalDataAccessCustomServer”
ARealOPCNodeName = “SomeComputerNodeName”
AnOPCHDAServer.Connect(ARealOPCHDAServer, ARealOPCNodeName)

Set AnOPCHDAServerBrowser = AnOPCHDAServer.CreateBrowser()

AnOPCHDAServerBrowser.MoveDown(AnOPCHDAServerBrowser.OPCHDABranches(1))
Items = AnOPCHDAServerBrowser.OPCHDAItems

For i = Lbound(Items) to Ubound(Items)

listBox.Add Items(i)

Next I

4.2.1 Summary of Properties

	CurrentPosition
	OPCHDABranches
	OPCHDALeaves

	OPCHDAItems
	
	

4.2.2 Summary of Methods

	MoveUp
	MoveToRoot
	MoveDown

	MoveTo
	GetItemID
	

4.2.3 OPCHDABrowser Properties

4.2.3.1 CurrentPosition

	Description
	(Read-only) Current position in the tree. This string will be “” (i.e. the "root") initially.

	Syntax
	CurrentPosition As String

	Remarks
	Current Position returns the absolute position and is equivalent to calling GetItemID on a branch (see also the Custom Interface Spec).

	Example
	‘ VB Syntax Example (getting the property):
Dim ACurrentPosition As String

AnOPCHDAServerBrowser.MoveDown(“level_1”)

ACurrentPosition = AnOPCHDAServerBrowser.CurrentPosition

4.2.3.2 OPCHDABranches

	Description
	(Read-only) Returns the names of the branches at the current position.

	Syntax
	OPCHDABranches() As String

	Example
	‘ VB Syntax Example (getting the property):
Dim Branches() As String

Branches = AnOPCHDAServerBrowser.OPCHDABranches

For i = LBound(Branches) To UBound(Branches)
 listbox.AddItem Branches(i)

Next i

4.2.3.3 OPCHDALeaves

	Description
	(Read-only) Returns the names of the leaves at the current position.

	Syntax
	OPCHDALeaves() As String

	Example
	‘ VB Syntax Example (getting the property):
Dim Leaves() As String

Leaves = AnOPCHDAServerBrowser.OPCHDALeaves

For i = LBound(Leaves) To UBound(Leaves)
 listbox.AddItem Leaves(i)

Next i

4.2.3.4 OPCHDAItems

	Description
	(Read-only) Returns the names of the items at the current position (see the Custom Interface Spec for the distinction between “leaves” and “items”).

	Syntax
	OPCHDAItems() As String

	Example
	‘ VB Syntax Example (getting the property):
Dim Items() As String

Items = AnOPCHDAServerBrowser.OPCHDAItems

For i = LBound(Items) To UBound(Items)
 listbox.AddItem Items(i)

Next i

4.2.4 OPCHDABrowser Methods

4.2.4.1 MoveUp

	Description
	Move up one level in the tree.

	Syntax
	MoveUp()

	Example
	AnOPCHDAServerBrowser.MoveUp

4.2.4.2 MoveToRoot

	Description
	Move up to the first level in the tree.

	Syntax
	MoveToRoot()

	Example
	AnOPCHDAServerBrowser.MoveToRoot

4.2.4.3 MoveDown

	Description
	Move down into the specified branch.

	Syntax
	MoveDown(BranchName As String)

	Example
	AnOPCHDAServerBrowser.MoveDown (“Floor1_Mixing”)

4.2.4.4 MoveTo

	Description
	Move to an absolute position.

	Syntax
	MoveTo(NewPosition As String)

	Part
	Description

	NewPosition
	Fully-qualified path indicating the position in the tree.

	Example
	AnOPCHDABrowser.MoveToRoot
AnOPCHDABrowser.MoveDown(“node”)
AnOPCHDABrowser.MoveDown(“device”)
AnOPCHDABrowser.MoveDown(“group”)

Position = AnOPCHDABrowser.CurrentPosition

AnOPCHDABrowser.MoveToRoot

AnOPCHDABrowser.MoveTo(Position)

‘ current position is now “node.device.group”

4.2.4.5 GetItemID

	Description
	Given a name, returns a valid item ID that can be passed to OPCHDAItems Add method.

	Syntax
	GetItemID(ItemName As String) As String

	Part
	Description

	ItemName
	The name of a branch or leaf at the current level.

	Remarks
	The server converts the name to an item ID based on the current “position” of the browser. It will not correctly translate a name if MoveUp, MoveDown, etc. has been called since the name was obtained.

	Example
	Leaves = AnOPCHDAServerBrowser.OPCHDALeafs

For I = Lbound(Leaves) to Ubound(Leaves)

Set AnOPCHDAItemID = AnOPCHDAServerBrowser.GetItemID(Leaves(i))

Next I

‘ or

AnOPCHDAServerBrowser.MoveDown “Mixing”
Set AnOPCHDAItemID = AnOPCHDAServerBrowser.GetItemID(“FIC101.PV”)

4.3 OPCHDAItems Object

	Description
	This object is a collection of OPCHDAItem objects. It also supplies the methods for performing actual historical data operations involving items.

	Syntax
	OPCHDAItems

	Example
	The following sample code is necessary for the subsequent Visual Basic Examples to be operational.

This code is referred to as OPCHDAItemsObjectBase.

Dim AnOPCHDAServer As OPCHDAServer

Dim ARealOPCHDAServer As String

Dim ARealOPCNodeName As String

Dim AnOPCHDAItemCollection As OPCHDAItems

Dim AnOPCHDAItem As OPCHDAItem

Dim ClientHandles(100) As Long

Dim AnOPCHDAItemIDs(100) As String

Dim AnOPCHDAItemServerHandles(10) As Long

Dim AnOPCHDAItemServerErrors() As Long

Set AnOPCHDAServer = New OPCHDAServer

ARealOPCHDAServer = “VendorX.HistoricalDataAccessCustomServer”

ARealOPCNodeName = “SomeComputerNodeName”

AnOPCHDAServer.Connect(ARealOPCHDAServer, ARealOPCNodeName)

Set AnOPCHDAItemCollection = AnOPCHDAServer.OPCHDAItems

4.3.1 Summary of Properties

	Parent
	Count
	

4.3.2 Summary of Methods

	Item
	GetOPCHDAItem
	AddItem

	AddItems
	Remove
	RemoveAll

	Validate
	SyncReadRaw
	SyncReadProcessed

	SyncReadAtTime
	SyncReadModified
	SyncReadAttribute

	SyncInsert
	SyncReplace
	SyncInsertReplace

	SyncDeleteRaw
	SyncDeleteAtTime
	SyncReadAnnotations

	SyncInsertAnnotations
	AsyncReadRaw
	AsyncAdviseRaw

	AsyncReadProcessed
	AsyncAdviseProcessed
	AsyncReadAtTime

	AsyncReadModified
	AsyncReadAttribute
	AsyncCancelRead

	AsyncInsert
	AsyncReplace
	AsyncInsertReplace

	AsyncDeleteRaw
	AsyncDeleteAtTime
	AsyncCancelUpdate

	AsyncReadAnnotations
	AsyncInsertAnnotations
	AsyncCancelAnnotations

	AsyncPlaybackRaw
	AsyncPlaybackProcessed
	AsyncCancelPlayback

4.3.3 Summary of Events

	DataChange
	AsyncReadComplete
	AsyncReadModifiedComplete

	AsyncReadAttributesComplete
	AsyncReadAnnotationsComplete
	AsyncInsertAnnotationsComplete

	Playback
	AsyncUpdateComplete
	AsyncCancelComplete

4.3.4 OPCHDAItems Properties

4.3.4.1 Parent

	Description
	 (Read-only) Returns reference to the parent OPCHDAServer object.

	Syntax
	 Parent As OPCHDAServer

4.3.4.2 Count

	Description
	 (Read-only) Required property for collections.

	Syntax
	 Count As Long

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCHDAItemCollection.Count

4.3.5 OPCHDAItems Methods

4.3.5.1 Item

	Description
	Required property for collections.

	Syntax
	 Item (ItemSpecifier As Variant) As OPCHDAItem

	Part
	Description

	ItemSpecifier
	Returns an OPCHDAItem by ItemSpecifier. ItemSpecifier is the 1-based index into the collection

	Remarks
	Returns an OPCHDAItem by ItemSpecifier. ItemSpecifier is the 1-based index into the collection. Use GetOPCHDAItem to reference by ServerHandle.

NOTE: do not confuse the automation 'Item' property with the OPCHDAItem object. The automation 'Item' is a special reserved property used in a generic way by automation collections to refer to the items they contain. The OPCHDAItem is an OPC Automation specific object type that can reside in an 'OPCHDAItems' collection.

4.3.5.2 GetOPCHDAItem

	Description
	Returns an OPCHDAItem by ServerHandle returned by Add. Use the Item property to reference by index.

	Syntax
	GetOPCHDAItem (ServerHandle As Long) As OPCHDAItem

	Part
	Description

	ServerHandle
	ServerHandle is the OPCHDAItem’s ServerHandle
Use Item to reference by index.

	Example
	Dim AnOPCHDAItem as OPCHDAItem

Set OPCHDAItem = GetOPCHDAItem(SomeItemServerHandle)

4.3.5.3 AddItem

	Description
	Creates a new OPCHDAItem object and adds it to the collection.

	Syntax
	AddItem (ItemID As String, ClientHandle As Long)

	Part
	Description

	ItemID
	Fully Qualified ItemID

	ClientHandle
	Client handle that will be returned with the

	Remarks
	This method is intended to provide the mechanism to add one item to the collection at a time. For adding multiple items use the AddItems method, rather than repetitively calling AddItem for each object to be added.

	See Also
	Appendix A - OPC Automation Error Handling
Appendix C- Notes On Automation Data Types

	Example
	Dim AnOPCHDAItemID as String

Dim AnClientHandle as Long

AnOPCHDAItemID = “N7:0”

AnClientHandle = 1975

AnOPCHDAItemCollection.AddItem AnOPCHDAItemID AnClientHandle

4.3.5.4 AddItems

	Description
	Creates OPCHDAItem objects and adds them to the collection.

	Syntax
	AddItems (NumItems As Long, ItemIDs() As String, ClientHandles() As Long, ByRef ServerHandles() As Long, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to be affected

	ItemIDs
	Array of Fully Qualified ItemID’s

	ClientHandles
	Array of client item handles for the items processed

	ServerHandles
	Array of server item handles for the items processed

	Errors
	Array of Long’s indicating the success of the individual items operation.

	See Also
	Appendix A - OPC Automation Error Handling
Appendix C- Notes On Automation Data Types

	Example
	Dim AddItemCount as long

Dim AnOPCHDAItemIDs() as String

Dim AnOPCHDAItemServerHandles as long

Dim AnOPCHDAItemServerErrors as long

For x = 1 To AddItemCount

ClientHandles(x)
= x + 1

AnOPCHDAItemID(x) = “Register_” & x

Next x

AnOPCHDAItemCollection.AddItems AddItemCount, AnOPCHDAItemIDs, ClientHandles, AnOPCHDAItemServerHandles, AnOPCHDAItemServerErrors

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.3.5.5 Remove

	Description
	 Removes an OPCHDAItem

	Syntax
	 Remove (NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to be removed

	ServerHandles
	Array of server item handles for the items processed

	Errors
	Array of Long’s indicating the success of the individual items operation.

	Example
	AnOPCHDAItemCollection.Remove AnOPCHDAItemServerHandles, AnOPCHDAItemServerErrors

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.3.5.6 RemoveAll

	Description
	Clears the collection of all OPCHDAItem objects.

	Syntax
	RemoveAll()

	Example
	AnOPCHDAItemCollection.RemoveAll()

4.3.5.7 Validate

	Description
	Determines if one or more OPCHDAItems could be successfully created via the Add method (but does not add them).

	Syntax
	Validate (NumItems As Long, ItemIDs() As String, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to be affected

	ItemIDs
	Array of Fully Qualified ItemID’s

	Errors
	Array of Long’s indicating the success of the individual items operation.

	See Also
	Appendix A - OPC Automation Error Handling
Appendix C- Notes On Automation Data Types

	Example
	Dim addItemCount as long

Dim AnOPCHDAItemIDs() as String

Dim AnOPCHDAItemServerHandles as long

Dim AnOPCHDAItemServerErrors as long

For x = 1 To AddItemCount

ClientHandles(x)
= x + 1

AnOPCHDAItemID(x) = “Register_” & x

Next x

AnOPCHDAItemCollection.Validate AddItemCount, AnOPCHDAItemIDs, AnOPCHDAItemServerErrors

‘ add code to process any errors that are returned from ‘the method, individual errors are reported in the Errors array

4.3.5.8 SyncReadRaw

	Description
	This function reads the values, qualities and timestamps from the history database for the specified time domain for one or more items.

	Syntax
	SyncReadRaw (ByRef StartTime, ByRef EndTime, NumValues As Long, Bounds As Long, NumItems As Long, ServerHandles() As Long, ByRef ItemValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item.

	Bounds
	True if bounding values should be returned.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ReadRawButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim NumValues As Long
Dim Bounds As Boolean
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim ItemValues() As Variant
Dim Errors() As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

StartTime = “-1D”
EndTime = “NOW”
NumValues = 0
Bounds = False

AnOPCHDAItemCollection.SyncReadRaw StartTime, EndTime, NumValues, Bounds, NumItems, ServerHandles, ItemValues, Errors

For i = 1 to NumItems
 ‘ process the values
 TextBox(i).Text = ItemValues(i).Count

Next i

End Sub

4.3.5.9 SyncReadProcessed

	Description
	This function computes aggregate values, qualities and timestamps from data in the history database for the specified time domain for one or more items.

	Syntax
	SyncReadProcessed (ByRef StartTime, ByRef EndTime, ResampleInterval As Date, NumItems As Long, ServerHandles() As Long, Aggregates() As Long, ByRef ItemValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	ResampleInterval
	Interval between return values.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Aggregates
	The calculations to be performed on raw data to create the values to be returned.

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ReadProcessedButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim ResampleInterval As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Aggregates(10) As Long
Dim ItemValues() As Variant
Dim Errors() As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)
 Aggregates (i) = OPCHDAInterpolative

Next i

StartTime = “-1D”
EndTime = “NOW”
ResampleInterval = 1# / 24# ‘ 1 hour

AnOPCHDAItemCollection.SyncReadProcessed StartTime, EndTime, ResampleInterval, NumItems, ServerHandles, Aggregates, ItemValues, Errors

For i = 1 to NumItems
 ‘ process the values
 TextBox(i).Text = ItemValues(i).Count

Next i

End Sub

4.3.5.10 SyncReadAtTime

	Description
	This function reads the values and qualities from the history database for the specified timestamps for one or more items.

	Syntax
	SyncReadAtTime (NumTimeStamps As Long, TimeStamps() As Date, NumItems As Long, ServerHandles() As Long, ByRef ItemValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	NumTimeStamps
	The number of timestamps specified.

	TimeStamps
	The timestamps for the requested data.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub ReadAtTimeButton_Click()

Dim NumTimeStamps As Long
Dim TimeStamps(3) As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim ItemValues() As Variant
Dim Errors() As Long

NumTimeStamps = 3

TimeStamps(1) = Now
TimeStamps(2) = Now – 1# ‘ yesterday
TimeStamps(3) = Now – 7# ‘ last week

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

AnOPCHDAItemCollection.SyncReadAtTime NumTimeStamps, TimeStamps, NumItems, ServerHandles, ItemValues, Errors

For i = 1 to NumItems
 ‘ process the values
 TextBox(i).Text = ItemValues(i).Count

Next i

End Sub

4.3.5.11 SyncReadModified

	Description
	This function reads the values, qualities and timestamps, user ID, and timestamp of the modification from the history database for the specified time domain for one or more items.

	Syntax
	SyncReadModified (ByRef StartTime, ByRef EndTime, NumValues As Long, NumItems As Long, ServerHandles() As Long, ByRef ItemValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAEntry objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ReadModifiedButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim NumValues As Long
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim ItemValues() As Variant
Dim Errors() As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

StartTime = “-1D”
EndTime = “NOW”
NumValues = 0

AnOPCHDAItemCollection.SyncReadModified StartTime, EndTime, NumValues, NumItems, ServerHandles, ItemValues, Errors

For i = 1 to NumItems
 ‘ process the entries
 TextBox(i).Text = ItemValues(i).Count

Next i

End Sub

4.3.5.12 SyncReadAttribute

	Description
	This function reads the attribute values, qualities, and timestamps from the history database for the specified time domain for an item.

	Syntax
	SyncReadAttribute (ByRef StartTime, ByRef EndTime, ServerHandle As Long, NumAttributes As Long, AttributeIDs() As Long, ByRef AttributeValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	ServerHandle
	The server handle for the item to be read.

	NumAttributes
	The number of attributes to be read.

	AttributeIDs
	Array of attribute ID’s for the attributes to be read

	AttributeValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual attributes. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in AttributeValues contains nothing.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ReadAttributesButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim ServerHandle As Long
Dim NumAttributes As Long
Dim AttributeIDs(3) As Long
Dim AttributeValues() As Variant
Dim Errors() As Long

ServerHandle = AnOPCItemServerHandles(1)

NumAttributes = 3

AttributeIDs(1) = OPCHDADataType
AttributeIDs(2) = OPCHDADescription
AttributeIDs(3) = OPCHDAEngUnits

StartTime = “-1Y”
EndTime = “NOW”

AnOPCHDAItemCollection.SyncReadAttribute StartTime, EndTime, ServerHandle, NumAttributes, AttributeIDs, AttributeValues, Errors

For i = 1 to NumAttributes
 ‘ process the values
 TextBox(i).Text = AttributeValues(i).Count

Next i

End Sub

4.3.5.13 SyncInsert/Replace/InsertReplace

	Description
	These functions insert or replace values, qualities, and timestamps in the history database for the specified timestamps for one or more items. SyncInsert will not replace a value if one already exists at the specified timestamp whereas SyncReplace will not insert a value if no value exists at the specified timestamp. SyncInsertReplace will unconditionally insert/replace values regardless of preexisting data.

	Syntax
	SyncInsert (NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long)

SyncReplace (NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long)

SyncInsertReplace (NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to update.

	ServerHandles
	Array of server item handles for the items to be updated.

	TimeStamps
	Array of time stamps for the new values.

	DataValues
	Array of new item values.

	Qualities
	Array of quality flags for the new values.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in updating the history for the item.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub InsertReplaceButton_Click()

Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim DataValues(3) As Variant
Dim Qualities(3) As Long
Dim Errors() As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “01/02/00 12:00 AM”
DataValues(1) = 123
Qualities(1) = OPCHDAQualityRaw + OPCQualityGood

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “04/05/03 9:00 AM”
DataValues(2) = 456
Qualities(2) = OPCHDAQualityRaw + OPCQualityGood

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “07/08/06 6:00 PM”
DataValues(3) = 789
Qualities(3) = OPCHDAQualityRaw + OPCQualityGood

AnOPCHDAItemCollection.SyncInsertReplace NumItems, ServerHandles, TimeStamps, DataValues, Qualities, Errors

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.14 SyncDeleteRaw

	Description
	This function deletes values, qualities and timestamps from the history database for the specified time domain for one or more items.

	Syntax
	SyncDeleteRaw (ByRef StartTime, ByRef EndTime, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumItems
	The number of items to be deleted.

	ServerHandles
	Array of server item handles for the items to be deleted

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in removing the history for the item.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub DeleteRawButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

StartTime = “-1D”
EndTime = “NOW”

AnOPCHDAItemCollection.SyncDeleteRaw StartTime, EndTime, NumItems, ServerHandles, Errors

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.15 SyncDeleteAtTime

	Description
	This function deletes values and qualities from the history database for the specified time stamps for one or more items.

	Syntax
	SyncDeleteAtTime (NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to be deleted.

	ServerHandles
	Array of server item handles for the items to be deleted

	TimeStamps
	The timestamps for the data to be deleted

	Errors
	Array of Long’s indicating the success of the operation for individual item deletes. This indicates whether the operation succeeded in removing the history for the item at the specified timestamp.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub DeleteAtTimeButton_Click()

Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim Errors() As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “01/02/00 12:00 AM”

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “04/05/03 9:00 AM”

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “07/08/06 6:00 PM”

AnOPCHDAItemCollection.SyncDeleteAtTime NumItems, ServerHandles, TimeStamps, Errors

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.16 SyncReadAnnotations

	Description
	This function reads the annotations from the history database for the specified time domain for one or more items.

	Syntax
	SyncReadAnnotations (ByRef StartTime, ByRef EndTime, NumItems As Long, ServerHandles() As Long, ByRef AnnotationValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	AnnotationValues
	Array of OPCHDAHistory objects containing OPCHDAEntry objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ReadAnnotationsButton_Click()

Dim StartTime As Variant
Dim EndTime As Variant
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim AnnotationValues() As Variant
Dim Errors() As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

StartTime = “-1D”
EndTime = “NOW”

AnOPCHDAItemCollection.SyncReadAnnotations StartTime, EndTime, NumItems, ServerHandles, AnnotationValues, Errors

For i = 1 to NumItems
 ‘ process the entries
 TextBox(i).Text = AnnotationValues (i).Count

Next i

End Sub

4.3.5.17 SyncInsertAnnotations

	Description
	This function inserts annotations into the history database for the specified items at the specified timestamps.

	Syntax
	SyncInsertAnnotations (NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, AnnotationValues() As Variant, ByRef Errors() As Long)

	Part
	Description

	NumItems
	The number of items to be annotated.

	ServerHandles
	Array of server item handles for the items to be annotated.

	TimeStamps
	Array of time stamps for the new annotations.

	AnnotationValues
	Array of new annotation values.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in annotating the history for the item.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub InsertAnnotationsButton_Click()

Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim AnnotationValues(3) As Variant
Dim Errors() As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “10/31/00 12:00 PM”
AnnotationValues(1) = “Homer shorts out control rod mechanism with donut jelly.”

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “10/31/00 12:15 PM”
AnnotationValues(2) = “Homer uses eeny-meeny-miny-mo procedure to avert core meltdown.”

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “10/31/00 12:30 PM”
AnnotationValues(3) = “Homer takes a nap.”

AnOPCHDAItemCollection.SyncInsertAnnotations NumItems, ServerHandles, TimeStamps, AnnotationValues, Errors

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.18 AsyncReadRaw

	Description
	This function reads the values, qualities and timestamps from the history database for the specified time domain for one or more items. The cancel ID is returned.

	Syntax
	AsyncReadRaw (TransactionID As Long, ByRef StartTime, ByRef EndTime, NumValues As Long, Bounds As Long, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item.

	Bounds
	True if bounding values should be returned.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncReadRawButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim NumValues As Long
Dim Bounds As Boolean
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 1
StartTime = “-1D”
EndTime = “NOW”
NumValues = 0
Bounds = False

CancelID = AnOPCHDAItemCollection.AsyncReadRaw (TransactionID, StartTime, EndTime, NumValues, Bounds, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.19 AsyncAdviseRaw

	Description
	This function reads the values, qualities and timestamps from the history database for the specified start time at the update interval for one or more items. The cancel ID is returned.

	Syntax
	AsyncAdviseRaw (TransactionID As Long, ByRef StartTime, UpdateInterval As Date, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	UpdateInterval
	The interval at which to send new data.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the DataChange event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If StartTime is specified as a String, then it is converted to an absolute Date before returning.

	Example
	Private Sub AsyncAdviseRawButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim UpdateInterval As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 2
StartTime = “-30S”
UpdateInterval = 1# / 24# / 60# ‘ 1 minute

CancelID = AnOPCHDAItemCollection.AsyncAdviseRaw (TransactionID, StartTime, UpdateInterval, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.20 AsyncReadProcessed

	Description
	This function computes aggregate values, qualities and timestamps from data in the history database for the specified time domain for one or more items. The cancel ID is returned.

	Syntax
	AsyncReadProcessed (TransactionID As Long, ByRef StartTime, ByRef EndTime, ResampleInterval As Date, NumItems As Long, ServerHandles() As Long, Aggregates() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	ResampleInterval
	Interval between return values.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Aggregates
	The calculations to be performed on raw data to create the values to be returned.

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncReadProcessedButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim ResampleInterval As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Aggregates(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)
 Aggregates (i) = OPCHDAInterpolative

Next i

TransactionID = 3
StartTime = “-1D”
EndTime = “NOW”
ResampleInterval = 1# / 24# ‘ 1 hour

CancelID = AnOPCHDAItemCollection.AsyncReadProcessed (TransactionID, StartTime, EndTime, ResampleInterval, NumItems, ServerHandles, Aggregates, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.21 AsyncAdviseProcessed

	Description
	This function computes aggregate values, qualities and timestamps from data in the history database for the specified start time at the update interval for one or more items. The cancel ID is returned.

	Syntax
	AsyncAdviseProcessed (TransactionID As Long, ByRef StartTime, ResampleInterval As Date, NumIntervals As Long, NumItems As Long, ServerHandles() As Long, Aggregates() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	ResampleInterval
	Interval between return values.

	NumIntervals
	The number of resample intervals between updates.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Aggregates
	The calculations to be performed on raw data to create the values to be returned.

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the DataChange event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If the StartTime is specified as a String, then it is converted to an absolute Date before returning.

	Example
	Private Sub AsyncAdviseProcessedButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim ResampleInterval As Date
Dim NumIntervals As Long
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Aggregates(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)
 Aggregates (i) = OPCHDAInterpolative

Next i

TransactionID = 4
StartTime = “-30S”
ResampleInterval = 1# / 24# / 60# / 2# ‘ 30 seconds
NumIntervals = 2

CancelID = AnOPCHDAItemCollection.AsyncAdviseProcessed (TransactionID, StartTime, ResampleInterval, NumIntervals, NumItems, ServerHandles, Aggregates, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.22 AsyncReadAtTime

	Description
	This function reads the values and qualities from the history database for the specified timestamps for one or more items. The cancel ID is returned.

	Syntax
	AsyncReadAtTime (TransactionID As Long, NumTimeStamps As Long, TimeStamps() As Date, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	NumTimeStamps
	The number of timestamps specified.

	TimeStamps
	The timestamps for the requested data.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

	Example
	Private Sub AsyncReadAtTimeButton_Click()

Dim TransactionID As Long
Dim NumTimeStamps As Long
Dim TimeStamps(3) As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumTimeStamps = 3

TimeStamps(1) = Now
TimeStamps(2) = Now – 1# ‘ yesterday
TimeStamps(3) = Now – 7# ‘ last week

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 5

CancelID = AnOPCHDAItemCollection.AsyncReadAtTime (TransActionID, NumTimeStamps, TimeStamps, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.23 AsyncReadModified

	Description
	This function reads the values, qualities and timestamps, user ID, and timestamp of the modification from the history database for the specified time domain for one or more items. The cancel ID is returned.

	Syntax
	AsyncReadModified (TransactionID As Long, ByRef StartTime, ByRef EndTime, NumValues As Long, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadModifiedComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncReadModifiedButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim NumValues As Long
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 6
StartTime = “-1D”
EndTime = “NOW”
NumValues = 100

CancelID = AnOPCHDAItemCollection.AsyncReadModified (TransactionID, StartTime, EndTime, NumValues, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.24 AsyncReadAttribute

	Description
	This function reads the attribute values, qualities, and timestamps from the history database for the specified time domain for an item. The cancel ID is returned.

	Syntax
	AsyncReadAttribute (TransactionID As Long, ByRef StartTime, ByRef EndTime, ServerHandle As Long, NumAttributes As Long, AttributeIDs() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	ServerHandle
	The server handle for the item to be read.

	NumAttributes
	The number of attributes to be read.

	AttributeIDs
	Array of attribute ID’s for the attributes to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual attributes. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadAttributesComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelRead.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncReadAttributesButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim ServerHandle As Long
Dim NumAttributes As Long
Dim AttributeIDs(3) As Long
Dim Errors() As Long
Dim CancelID As Long

ServerHandle = AnOPCItemServerHandles(1)

NumAttributes = 3

AttributeIDs(1) = OPCHDADataType
AttributeIDs(2) = OPCHDADescription
AttributeIDs(3) = OPCHDAEngUnits

TransactionID = 7
StartTime = “-1Y”
EndTime = “NOW”

CancelID = AnOPCHDAItemCollection.AsyncReadAttribute (TransactionID, StartTime, EndTime, ServerHandle, NumAttributes, AttributeIDs, Errors)

For i = 1 to NumAttributes
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.25 AsyncCancelRead

	Description
	Request that the server cancel an outstanding read transaction. An AsyncCancelComplete event will occur indicating whether or not the cancel succeeded.

	Syntax
	AsyncCancelRead (CancelID As Long)

	Part
	Description

	CancelID
	The Server generated CancelID that was previously returned by the asynchronous read method that the client now wants to cancel.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncCancelComplete event associated with the OPCHDAItems object. The client specified transaction ID (TransactionID) will be returned to the automation client application in the AsyncCancelComplete event.

	Example
	Private Sub AsyncCancelReadButton_Click()

Dim CancelID As Long

CancelID = 1 ‘ some transaction id returned from one of the async read calls.

AnOPCHDAItemCollection.AsyncCancelRead CancelID

End Sub

4.3.5.26 AsyncInsert/Replace/InsertReplace

	Description
	These functions insert or replace values, qualities, and timestamps in the history database for the specified timestamps for one or more items. AsyncInsert will not replace a value if one already exists at the specified timestamp whereas AsyncReplace will not insert a value if no value exists at the specified timestamp. AsyncInsertReplace will unconditionally insert/replace values regardless of preexisting data. The cancel ID is returned.

	Syntax
	AsyncInsert (TransactionID As Long, NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long) As Long

AsyncReplace (TransactionID As Long, NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long) As Long

AsyncInsertReplace (TransactionID As Long, NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, DataValues() As Variant, Qualities() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	NumItems
	The number of items to update.

	ServerHandles
	Array of server item handles for the items to be updated.

	TimeStamps
	Array of time stamps for the new values.

	DataValues
	Array of new item values.

	Qualities
	Array of quality flags for the new values.

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with updating the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncUpdateComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelUpdate.

	Example
	Private Sub AsyncInsertReplaceButton_Click()

Dim TransactionID As Long
Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim DataValues(3) As Variant
Dim Qualities(3) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “01/02/00 12:00 AM”
DataValues(1) = 123
Qualities(1) = OPCHDAQualityRaw + OPCQualityGood

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “04/05/03 9:00 AM”
DataValues(2) = 456
Qualities(2) = OPCHDAQualityRaw + OPCQualityGood

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “07/08/06 6:00 PM”
DataValues(3) = 789
Qualities(3) = OPCHDAQualityRaw + OPCQualityGood

TransactionID = 8

CancelID = AnOPCHDAItemCollection.AsyncInsertReplace (TransactionID, NumItems, ServerHandles, TimeStamps, DataValues, Qualities, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.27 AsyncDeleteRaw

	Description
	This function deletes values, qualities and timestamps from the history database for the specified time domain for one or more items. The cancel ID is returned.

	Syntax
	AsyncDeleteRaw (TransactionID As Long, ByRef StartTime, ByRef EndTime, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumItems
	The number of items to be deleted.

	ServerHandles
	Array of server item handles for the items to be deleted

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with removing the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncUpdateComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelUpdate.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncDeleteRawButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 9
StartTime = “-1D”
EndTime = “NOW”

CancelID = AnOPCHDAItemCollection.AsyncDeleteRaw (TransactionID, StartTime, EndTime, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.28 AsyncDeleteAtTime

	Description
	This function deletes values and qualities from the history database for the specified time stamps for one or more items. The cancel ID is returned.

	Syntax
	AsyncDeleteAtTime (TransactionID As Long, NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	NumItems
	The number of items to be deleted.

	ServerHandles
	Array of server item handles for the items to be deleted

	TimeStamps
	The timestamps for the data to be deleted

	Errors
	Array of Long’s indicating the initial success of the operation for individual item deletes. This indicates whether the operation will proceed with removing the history for the item at the specified timestamp.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncUpdateComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelUpdate.

	Example
	Private Sub AsyncDeleteAtTimeButton_Click()

Dim TransactionID As Long
Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim Errors() As Long
Dim CancelID As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “01/02/00 12:00 AM”

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “04/05/03 9:00 AM”

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “07/08/06 6:00 PM”

TransactionID = 10

CancelID = AnOPCHDAItemCollection.AsyncDeleteAtTime (TransactionID, NumItems, ServerHandles, TimeStamps, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.29 AsyncCancelUpdate

	Description
	Request that the server cancel an outstanding update transaction. An AsyncCancelComplete event will occur indicating whether or not the cancel succeeded.

	Syntax
	AsyncCancelUpdate (CancelID As Long)

	Part
	Description

	CancelID
	The Server generated CancelID that was previously returned by the asynchronous update method that the client now wants to cancel.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncCancelComplete event associated with the OPCHDAItems object. The client specified transaction ID (TransactionID) will be returned to the automation client application in the AsyncCancelComplete event.

	Example
	Private Sub AsyncCancelUpdateButton_Click()

Dim CancelID As Long

CancelID = 1 ‘ some transaction id returned from one of the async update calls.

AnOPCHDAItemCollection.AsyncCancelUpdate CancelID

End Sub

4.3.5.30 AsyncReadAnnotations

	Description
	This function reads the annotations from the history database for the specified time domain for one or more items. The cancel ID is returned.

	Syntax
	AsyncReadAnnotations (TransactionID As Long, ByRef StartTime, ByRef EndTime, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncReadAnnotationsComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelAnnotations.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncReadAnnotationsButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim AnnotationValues() As Variant
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 11
StartTime = “-1D”
EndTime = “NOW”

CancelID = AnOPCHDAItemCollection.AsyncReadAnnotations (TransactionID, StartTime, EndTime, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.31 AsyncInsertAnnotations

	Description
	This function inserts annotations into the history database for the specified items at the specified timestamps. The cancel ID is returned.

	Syntax
	AsyncInsertAnnotations (TransactionID As Long, NumItems As Long, ServerHandles() As Long, TimeStamps() As Date, AnnotationValues() As Variant, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	NumItems
	The number of items to be annotated.

	ServerHandles
	Array of server item handles for the items to be annotated.

	TimeStamps
	Array of time stamps for the new annotations.

	AnnotationValues
	Array of new annotation values.

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with annotating the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncInsertAnnotationsComplete event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelAnnotations.

	Example
	Private Sub AsyncInsertAnnotationsButton_Click()

Dim TransactionID As Long
Dim NumItems As Long
Dim ServerHandles(3) As Long
Dim TimeStamps(3) As Date
Dim AnnotationValues(3) As Variant
Dim Errors() As Long
Dim CancelID As Long

NumItems = 3

ServerHandles(1) = AnOPCItemServerHandles(1)
TimeStamps(1) = “10/31/00 12:00 PM”
AnnotationValues(1) = “Homer shorts out control rod mechanism with donut jelly.”

ServerHandles(2) = AnOPCItemServerHandles(1)
TimeStamps(2) = “10/31/00 12:15 PM”
AnnotationValues(2) = “Homer uses eeny-meeny-miny-mo procedure to avert core meltdown.”

ServerHandles(3) = AnOPCItemServerHandles(1)
TimeStamps(3) = “10/31/00 12:30 PM”
AnnotationValues(3) = “Homer takes a nap.”

TransactionID = 12

CancelID = AnOPCHDAItemCollection.AsyncInsertAnnotations (NumItems, ServerHandles, TimeStamps, AnnotationValues, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.32 AsyncCancelAnnotations

	Description
	Request that the server cancel an outstanding annotations transaction. An AsyncCancelComplete event will occur indicating whether or not the cancel succeeded.

	Syntax
	AsyncCancelAnnotations (CancelID As Long)

	Part
	Description

	CancelID
	The Server generated CancelID that was previously returned by the asynchronous annotations method that the client now wants to cancel.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncCancelComplete event associated with the OPCHDAItems object. The client specified transaction ID (TransactionID) will be returned to the automation client application in the AsyncCancelComplete event.

	Example
	Private Sub AsyncCancelAnnotationsButton_Click()

Dim CancelID As Long

CancelID = 1 ‘ some transaction id returned from one of the async annotations calls.

AnOPCHDAItemCollection.AsyncCancelAnnotations CancelID

End Sub

4.3.5.33 AsyncPlaybackRaw

	Description
	This function reads the values, qualities and timestamps from the history database for the specified start time to the end time at the update interval for one or more items. It responds with the amount of data indicated by the update duration each time. The cancel ID is returned.

	Syntax
	AsyncPlaybackRaw (TransactionID As Long, ByRef StartTime, ByRef EndTime, NumValues As Long, UpdateDuration As Date, UpdateInterval As Date, NumItems As Long, ServerHandles() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The earliest time of the history to be read, either as an absolute Date or a relative time String.

	EndTime
	The latest time of the history to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item over the time range.

	UpdateDuration
	The amound of time covered in each update.

	UpdateInterval
	The interval at which to send updates.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the Playback event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelPlayback.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncPlaybackRawButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim NumValues As Long
Dim UpdateDuration As Date
Dim UpdateInterval As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)

Next i

TransactionID = 13
StartTime = “-60S”
EndTime = “-45S”
NumValues = 0
UpdateDuration = 1# / 24# / 60# / 60# ‘ 1 second
UpdateInterval = 1# / 24# / 60# / 12# ‘ 5 seconds

CancelID = AnOPCHDAItemCollection.AsyncPlaybackRaw (TransactionID, StartTime, EndTime, NumValues, UpdateDuration, UpdateInterval, NumItems, ServerHandles, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.34 AsyncPlaybackProcessed

	Description
	This function computes aggregate values, qualities and timestamps from data in the history database for the specified start time to the end time at the update interval for one or more items. It responds with the amount of data indicated by the update duration each time. The cancel ID is returned.

	Syntax
	AsyncPlaybackProcessed (TransactionID As Long, ByRef StartTime, ByRef EndTime, ResampleInterval As Date, NumIntervals As Long, UpdateInterval As Date, NumItems As Long, ServerHandles() As Long, Aggregates() As Long, ByRef Errors() As Long) As Long

	Part
	Description

	TransactionID
	Client-generated identifier returned along with the results of the operation in the corresponding completion event.

	StartTime
	The earliest time of the history to be read, either as an absolute Date or a relative time String.

	EndTime
	The latest time of the history to be read, either as an absolute Date or a relative time String.

	ResampleInterval
	Interval between return values.

	NumIntervals
	The number of resample intervals in an update.

	UpdateInterval
	The interval at which to send updates.

	NumItems
	The number of items to be read.

	ServerHandles
	Array of server item handles for the items to be read

	Aggregates
	The calculations to be performed on raw data to create the values to be returned.

	Errors
	Array of Long’s indicating the initial success of the operation for individual items. This indicates whether the operation will proceed with obtaining the history for the item.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the Playback event associated with the OPCHDAItems object.

The server-generated cancel ID returned by the method may be used to cancel the operation via AsyncCancelPlayback.

If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub AsyncPlaybackProcessedButton_Click()

Dim TransactionID As Long
Dim StartTime As Variant
Dim EndTime As Variant
Dim ResampleInterval As Date
Dim NumIntervals As Long
Dim UpdateInterval As Date
Dim NumItems As Long
Dim ServerHandles(10) As Long
Dim Aggregates(10) As Long
Dim Errors() As Long
Dim CancelID As Long

NumItems = 10

For i = 1 to NumItems
 ‘ set up which items to be read
 ServerHandles(i) = AnOPCItemServerHandles(i)
 Aggregates (i) = OPCHDAInterpolative

Next i

TransactionID = 14
StartTime = “-14D”
EndTime = “-1D”
ResampleInterval = 1# / 24# ‘ 1 hour
NumIntervals = 8
UpdateInterval = 1# / 24# / 60# ‘ 1 minute

CancelID = AnOPCHDAItemCollection.AsyncPlaybackProcessed (TransactionID, StartTime, EndTime, ResampleInterval, NumIntervals, UpdateInterval, NumItems, ServerHandles, Aggregates, Errors)

For i = 1 to NumItems
 ‘ process errors
 TextBox(i).Text = Errors(i)

Next i

End Sub

4.3.5.35 AsyncCancelPlayback

	Description
	Request that the server cancel an outstanding playback transaction. An AsyncCancelComplete event will occur indicating whether or not the cancel succeeded.

	Syntax
	AsyncCancelPlayback (CancelID As Long)

	Part
	Description

	CancelID
	The Server generated CancelID that was previously returned by the asynchronous playback method that the client now wants to cancel.

	Remarks
	This method requires the OPCHDAItems object to have been dimensioned with events (Dim WithEvents xxx As OPCHDAItems) in order for the results of the operation to be returned to the automation client application. The automation server will return the results of the operation when it fires the AsyncCancelComplete event associated with the OPCHDAItems object. The client specified transaction ID (TransactionID) will be returned to the automation client application in the AsyncCancelComplete event.

	Example
	Private Sub AsyncCancelPlaybackButton_Click()

Dim CancelID As Long

CancelID = 1 ‘ some transaction id returned from one of the async playback calls.

AnOPCHDAItemCollection.AsyncCancelPlayback CancelID

End Sub

4.3.6 OPCHDAItems Events

4.3.6.1 DataChange

	Description
	This event is fired to handle notifications resulting from calls to AdviseRaw or AdviseProcessed.

	Syntax
	DataChange (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	Aggregates
	Array of aggregate ID’s requested for the items.

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_DataChange(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.2 AsyncReadComplete

	Description
	This event fires when an AsyncReadRaw, AsyncReadProcessed, or AsyncReadAtTime is completed.

	Syntax
	AsyncReadComplete (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	Aggregates
	Array of aggregate ID’s requested for the items.

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects..

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncReadComplete(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.3 AsyncReadModifiedComplete

	Description
	This event fires when an AsyncReadModified is completed.

	Syntax
	AsyncReadModifiedComplete (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAEntry objects..

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncReadModifiedComplete(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, ItemValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.4 AsyncReadAttributesComplete

	Description
	This event fires when an AsyncReadAttributes is completed.

	Syntax
	AsyncReadAttributesComplete (TransactionID As Long, Status As Long, ClientHandle As Long, NumAttributes As Long, AttributesIDs() As Long, AttributeValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	ClientHandle
	The client handle for the item.

	NumAttributes
	The number of attributes returned.

	AttributesIDs
	Array of attribute ID’s that were requested for the item.

	AttributeValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects..

	Errors
	Array of Long’s indicating the success of the operation for individual attributes. This indicates whether the operation succeeded in obtaining the history for the attribute. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncReadAttributesComplete(TransactionID As Long, Status As Long, ClientHandle As Long, NumAttributes As Long, AttributesIDs() As Long, AttributeValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.5 AsyncReadAnnotationsComplete

	Description
	This event fires when an AsyncReadAnnotations is completed.

	Syntax
	AsyncReadAnnotationsComplete (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, AnnotationValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	AnnotationValues
	Array of OPCHDAHistory objects containing OPCHDAEntry objects..

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncReadAnnotationsComplete(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, AnnotationValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.6 AsyncInsertAnnotationsComplete

	Description
	This event fires when an AsyncInsertAnnotations is completed.

	Syntax
	AsyncInsertAnnotations (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in updating the history for the item.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncInsertAnnotations (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Errors() As Long)

‘ write your client code here to process the errors

End Sub

4.3.6.7 Playback

	Description
	This event is fired to handle notifications resulting from calls to PlaybackRaw or PlaybackProcessed.

	Syntax
	Playback (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	Aggregates
	Array of aggregate ID’s requested for the items.

	ItemValues
	Array of OPCHDAHistory objects containing OPCHDAValue objects.

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in obtaining the history for the item. NOTE any FAILED error code indicates that the corresponding element in ItemValues contains nothing.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_Playback(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Aggregates() As Long, ItemValues() As Variant, Errors() As Long)

‘ write your client code here to process the data values

End Sub

4.3.6.8 AsyncUpdateComplete

	Description
	This event fires when an AsyncInsert, AsyncReplace, AsyncInsertReplace, AsyncDeleteRaw, or AsyncDeleteAtTime is completed.

	Syntax
	AsyncUpdateComplete (TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Errors() As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID passed to the original call.

	Status
	Overall status of the call.

	NumItems
	The number of items returned

	ClientHandles
	Array of client handles for the items

	Errors
	Array of Long’s indicating the success of the operation for individual items. This indicates whether the operation succeeded in updating the history for the item.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncUpdateComplete(TransactionID As Long, Status As Long, NumItems As Long, ClientHandles() As Long, Errors() As Long)

‘ write your client code here to process the errors

End Sub

4.3.6.9 AsyncCancelComplete

	Description
	This event fires when an AsyncCancelRead, AsyncCancelUpdate, AsyncCancelAnnotations, or AsyncCancelPlayback is completed.

	Syntax
	AsyncCancelComplete (TransactionID As Long)

	Part
	Description

	TransactionID
	The client specified transaction ID. This is included in the ‘completion’ information provided in the Corresponding Event.

	Example
	Dim WithEvents AnOPCHDAItemCollection As OPCHDAItems

Private Sub AnOPCHDAItemCollection_AsyncCancelComplete(TransactionID As Long)

‘ write your client code here to process the cancel

End Sub

4.4 OPCHDAItem Object

	Description
	An OPC Item represents a connection to data sources within the server. In the case of HDA, this object is simply a holding place for information about the connection. All properties are read-only and receive their values only when the object is created.

	Syntax
	OPCHDAItem

4.4.1 Summary of Properties

	Parent
	ClientHandle
	ServerHandle

	ItemID
	
	

4.4.2 Summary of Methods

	ReadRaw
	ReadProcessed
	ReadAtTime

	Update
	DeleteRaw
	

4.4.3 OPCHDAItem Properties

4.4.3.1 Parent

	Description
	 (Read-only) Returns reference to the parent OPCHDAServer object.

	Syntax
	 Parent As OPCHDAServer

4.4.3.2 ClientHandle

	Description
	 (Read-only) A Long value associated with the OPCHDAItem. Its purpose is for the client to quickly locate the destination of data. The handle is typically an index, etc. This handle will be returned to the client along with data by asynchronous events.

	Syntax
	ClientHandle As Long

	Example
	Dim AnOPCHDAItem as OPCHDAItem

Set OPCHDAItem = AnOPCHDAServer.OPCHDAItems.AddItem (SomeItemID, ClientHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Long
CurrentValue = AnOPCHDAItem.ClientHandle

4.4.3.3 ServerHandle

	Description
	(Read-only) The server assigned handle for the OPC Item. The ServerHandle is a Long that uniquely identifies this item. The client must supply this handle to some of the methods that operate on OPCHDAItem objects (such as OPCHDAItems.Remove).

	Syntax
	 ServerHandle As Long

	Example
	Dim AnOPCHDAItem as OPCHDAItem

Set OPCHDAItem = GetOPCHDAItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As Long
 CurrentValue = AnOPCHDAItem.ServerHandle

4.4.3.4 ItemID

	Description
	 (Read-only) The unique identifier for this item.

	Syntax
	 ItemID As String

	Example
	Dim AnOPCHDAItem as OPCHDAItem

Set OPCHDAItem = GetOPCHDAItem(SomeItemServerHandle)

VB Syntax Example (getting the property):
Dim CurrentValue As String
 CurrentValue = AnOPCHDAItem.ItemID

4.4.4 OPCHDAItem Methods

4.4.4.1 ReadRaw

	Description
	This shortcut method reads the values, qualities and timestamps from the history database for the specified time domain for the item. An OPCHDAHistory collection of OPCHDAValue objects is returned.

	Syntax
	ReadRaw (ByRef StartTime, ByRef EndTime, NumValues As Long = 0, Bounds As Long = False) As Variant

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	NumValues
	The maximum number of values to return per item.

	Bounds
	True if bounding values should be returned.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ItemReadRawButton_Click()

Dim History As OPCHDAHistory
Dim Value As OPCHDAValue

Set History = AnOPCHDAItem.ReadRaw (“-1D”, “NOW”)

For Each Value In History
 ‘ process item values
Next Value

End Sub

4.4.4.2 ReadProcessed

	Description
	This function computes aggregate values, qualities and timestamps from data in the history database for the specified time domain for the item. An OPCHDAHistory collection of OPCHDAValue objects is returned.

	Syntax
	ReadProcessed (ByRef StartTime, ByRef EndTime, ResampleInterval As Date, Aggregate As Long) As Variant

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	ResampleInterval
	Interval between return values.

	Aggregate
	The calculation to be performed on raw data to create the values to be returned.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ItemReadProcessedButton_Click()

Dim History As OPCHDAHistory
Dim Value As OPCHDAValue

Set History = AnOPCHDAItem.ReadProcessed (“-3D”, “NOW”, 1# / 24#, OPCHDATimeAverage)

For Each Value In History
 ‘ process item values
Next Value

End Sub

4.4.4.3 ReadAtTime

	Description
	This function reads the values and qualities from the history database for the specified timestamps for the item. An OPCHDAHistory collection of OPCHDAValue objects is returned.

	Syntax
	ReadAtTime (NumTimeStamps As Long, TimeStamps() As Date) As Variant

	Part
	Description

	NumTimeStamps
	The number of timestamps specified.

	TimeStamps
	The timestamps for the requested data.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub ItemReadAtTimeButton_Click()

Dim TimeStamps(3) As Date
Dim History As OPCHDAHistory
Dim Value As OPCHDAValue

TimeStamps(1) = Now
TimeStamps(2) = Now – 1# ‘ yesterday
TimeStamps(3) = Now – 7# ‘ last week

Set History = AnOPCHDAItem.ReadAtTime(3, TimeStamps)

For Each Value In History
 ‘ process item values
Next Value

End Sub

4.4.4.4 Update

	Description
	This function inserts, replaces, deletes, or annotates the value and quality at the specified timestamp in the history database for the item.

	Syntax
	Update (TimeStamp As Date, DataValue As Variant, Quality As Long, EditType As Long)

	Part
	Description

	TimeStamp
	The time stamps for the value to update.

	DataValue
	The new item or annotation value.

	Quality
	The quality for the new value.

	EditType
	Indicates the type of operation to perform: Insert, Replace, InsertReplace, DeleteAtTime, or Annotate.

	Remarks
	The function runs to completion before returning.

	Example
	Private Sub ItemUpdateButton_Click()

AnOPCHDAItem.Update “01/02/00 12:00 AM”, 123, OPCHDAQualityRaw + OPCQualityGood

End Sub

4.4.4.5 DeleteRaw

	Description
	This function deletes values, qualities and timestamps from the history database for the specified time domain for the item.

	Syntax
	DeleteRaw (ByRef StartTime, ByRef EndTime)

	Part
	Description

	StartTime
	The beginning of the history period to be read, either as an absolute Date or a relative time String.

	EndTime
	The end of the history period to be read, either as an absolute Date or a relative time String.

	Remarks
	The function runs to completion before returning. If either StartTime or EndTime are specified as Strings, then they are converted to absolute Dates before returning.

	Example
	Private Sub ItemDeleteRawButton_Click()

AnOPCHDAItem.DeleteRaw (“-1Y”, “NOW)

End Sub

4.5 OPCHDAHistory Object

	Description
	The OPCHDAHistory object is a collection of OPCHDAValue (or OPCHDAEntry) objects which together represent some segment of the history of an OPC item. The order of the values in the collection is either chronological or reverse-chronological, depending on the call that produced the collection.

	Syntax
	OPCHDAHistory

	Example
	Dim st As Variant
Dim et As Variant
Dim ServerHandles(1) As Long
Dim ItemValues() As Variant
Dim Errors() As Long

st = “-1H”
et = “NOW”
ServerHandles(1) = AnOPCHDAItem.ServerHandle

AnOPCHDAServer.OPCHDAItems.SyncReadRaw st, et, 0, False, 1, ServerHandles, ItemValues, Errors

Dim AnOPCHDAHistoryCollection As OPCHDAHistory
Dim Value As OPCHDAValue

If Errors(1) > 0 Then
 Set AnOPCHDAHistoryCollection = ItemValues(1)
 For Each Value In AnOPCHDAHistoryCollection
 ‘ Do something with the value
 Next Value
End If

4.5.1 Summary of Properties

	Count
	
	

4.5.2 Summary of Methods

	Item
	
	

4.5.3 OPCHDAHistory Properties

4.5.3.1 Count

	Description
	 (Read-only) Required property for collections.

	Syntax
	 Count As Long

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Long
Dim SomeValue As Long
CurrentValue = AnOPCHDAHistoryCollection.Count

4.5.4 OPCHDAHistory Methods

4.5.4.1 Item

	Description
	Required property for collections.

	Syntax
	 Item (ItemSpecifier As Variant) As OPCHDAValue

	Part
	Description

	ItemSpecifier
	1-based index into the collection or a timestamp.

	Remarks
	Returns an OPCHDAValue by ItemSpecifier. ItemSpecifier is the 1-based index into the collection or a timestamp for a particular value (the latter most useful with ReadAtTime operations). Note that the returned object may in fact be an OPCHDAEntry if the collection is the result of reading modifications or annotations.

4.6 OPCHDAValue Object

	Description
	Represents a discrete historical value for either an item or an attribute.

	Syntax
	OPCHDAValue

	Example
	Dim Value As OPCHDAValue

For Each Value In AnOPCHDAHistoryCollection
 listbox.AddItem Value.TimeStamp & “ “ & Value.Quality & “ “ & Value.DataValue
Next Value

4.6.1 Summary of Properties

	TimeStamp
	DataValue
	Quality

4.6.2 OPCHDAValue Properties

4.6.2.1 TimeStamp

	Description
	 (Read-only) Historical timestamp for the value.

	Syntax
	TimeStamp As Date

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Date
CurrentValue = AnOPCHDAValue.TimeStamp

4.6.2.2 DataValue

	Description
	 (Read-only) Historical value. This is the default property for OPCHDAValue.

	Syntax
	DataValue As Variant

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Variant
CurrentValue = AnOPCHDAValue.DataValue
’ Or
CurrentValue = AnOPCHDAValue

4.6.2.3 Quality

	Description
	 (Read-only) Quality for the historical value.

	Syntax
	Quality As Long

	Remarks
	For attribute values and annotations, this property will always be “Good non-specific”.

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Long
CurrentValue = AnOPCHDAValue.Quality

4.7 OPCHDAEntry Object

	Description
	Represents a discrete historical entry for a modification or an annotation.

	Syntax
	OPCHDAEntry

	Remarks
	The OPCHDAEntry object is an extension of the OPCHDAValue object and thus inherits the properties of that object.

	Example
	Dim Entry As OPCHDAEntry

For Each Entry In AnOPCHDAHistoryCollection
 listbox.AddItem Entry.TimeStamp & “ “ & Entry.EntryType & “ “ & Entry.User
Next Value

4.7.1 Summary of Properties

	TimeStamp
	DataValue
	Quality

	EntryTime
	EntryType
	User

4.7.2 OPCHDAEntry Properties

4.7.2.1 TimeStamp, DataValue, Quality

(see OPCHDAValue)

4.7.2.2 EntryTime

	Description
	 (Read-only)

	Syntax
	EntryTime As Date

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Date
CurrentValue = AnOPCHDAValue.EntryTime

4.7.2.3 EntryType

	Description
	 (Read-only)

	Syntax
	EntryType As Long

	Remarks
	This property is always OPCHDAAnnotate for annotations.

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As Long
CurrentValue = AnOPCHDAValue.EntryType

4.7.2.4 User

	Description
	 (Read-only)

	Syntax
	User As String

	Example
	VB Syntax Example (getting the property):
Dim CurrentValue As String
CurrentValue = AnOPCHDAValue.User

5 OPC HDA Automation Definitions and Symbols

5.1 OPCHDAServerState

	Symbol
	Description

	OPCHDAUp
	

	OPCHDADown
	

	OPCHDAIndeterminate
	

5.2 OPCHDAOperatorCode

	Symbol
	Description

	OPCHDAEqual
	

	OPCHDALess
	

	OPCHDALessEqual
	

	OPCHDAGreater
	

	OPCHDAGreaterEqual
	

5.3 OPCHDAEditType

	Symbol
	Description

	OPCHDAInsert
	

	OPCHDAReplace
	

	OPCHDAInsertReplace
	

	OPCHDADelete
	

	OPCHDAAnnotate
	

5.4 OPCHDAErrors

	OPC Error
	Value
	Description

	OPCHDANoData
	0x40041002L
	There is no data within the specified parameters.

	OPCHDAMoreData
	0x40041003L
	There is more data satisfying the query than was returned.

	OPCHDACurrentValue
	0x40041005L
	The server only returns current values for the requested item attributes.

	OPCHDAExtraData
	0x40041006L
	Additional data satisfying the query was found.

	OPCHDAInserted
	0x4004100EL
	The requested insert occurred.

	OPCHDAReplaced
	0x4004100FL
	The requested replace occurred.

	OPCHDANoFilter
	0x80041007L
	The server does not support this filter.

	OPCHDAMaxExceeded
	0xC0041001L
	The maximum number of values requested exceeds the server's limit.

	OPCHDAUnknownAttrID
	0xC0041008L
	The server does not support this attribute.

	OPCHDANotAvail
	0xC0041009L
	The requested aggregate is not available for the specified item.

	OPCHDAInvalidDataType
	0xC004100AL
	The supplied value for the attribute is not a correct data type.

	OPCHDADataExists
	0xC004100BL
	Unable to insert - data already present.

	OPCHDAInvalidAttrID
	0xC004100CL
	The supplied attribute ID is not valid.

	OPCHDAInvalidAggregate
	0xC0041004L
	The aggregate requested is not valid.

5.5 OPCHDAAggregate

	Symbol
	Description

	OPCHDANoAggregate
	

	OPCHDAInterpolative
	

	OPCHDATotal
	

	OPCHDAAverage
	

	OPCHDATimeAverage
	

	OPCHDACount
	

	OPCHDAStDev
	

	OPCHDAMinimumActualTime
	

	OPCHDAMinimum
	

	OPCHDAMaximumActualTime
	

	OPCHDAMaximum
	

	OPCHDAStart
	

	OPCHDAEnd
	

	OPCHDADelta
	

	OPCHDARegSlope
	

	OPCHDARegConst
	

	OPCHDARegDev
	

	OPCHDAVariance
	

	OPCHDARange
	

	OPCHDADurationGood
	

	OPCHDADurationBad
	

	OPCHDAPercentGood
	

	OPCHDAPercentBad
	

	OPCHDAWorstQuality
	

	OPCHDAAnnotations
	

5.6 OPCHDAQuality

Use these in conjuction with the qualities defined in the OPC DA Automation specification.

	OPC Error
	Value
	Description

	OPCHDAQualityExtraData
	0x00010000
	

	OPCHDAQualityInterpolated
	0x00020000
	

	OPCHDAQualityRaw
	0x00040000
	

	OPCHDAQualityCalculated
	0x00080000
	

	OPCHDAQualityNoBound
	0x00100000
	

	OPCHDAQualityNoData
	0x00200000
	

	OPCHDAQualityDataLost
	0x00400000
	

	OPCHDAQualityConversion
	0x00800000
	

5.7 OPCHDAAttribute

	Symbol
	Description

	OPCHDADataType
	

	OPCHDADescription
	

	OPCHDAEngUnits
	

	OPCHDAStepped
	

	OPCHDAArchiving
	

	OPCHDADeriveEquation
	

	OPCHDANodeName
	

	OPCHDAProcessName
	

	OPCHDASourceName
	

	OPCHDASourceType
	

	OPCHDANormalMaximum
	

	OPCHDANormalMinimum
	

	OPCHDAItemID
	

	OPCHDAMaxTimeInt
	

	OPCHDAMinTimeInt
	

	OPCHDAExceptionDev
	

	OPCHDAExceptionDevType
	

	OPCHDAHighEntryLimit
	

	OPCHDALowEntryLimit
	

6 Appendix A - OPC Automation Error Handling
When a run-time error occurs, the properties of the Visual Basic Err object are filled with information that uniquely identifies the error.

If your Visual Basic code is not set up to handle the error using the On Error mechanism, an exception will be generated, and depending on the context (Visual Basic in Debug Mode, or an executable), a message box will be invoked with the following information:

· Runtime Error: decimal error number (hex error number)

· Method “X” of Object “Y” Failed. (Note when your application is an executable, no value for X and Y are displayed)

Therefore, it is highly recommended by the OPC Foundation, that your application take appropriate steps to catch any OPC Automation errors that may occur as a result of setting properties or invoking methods on the OPC Historical Data Access Automation Objects.

An error handler is a routine for trapping and responding to errors in your application. An OPC Automation client should add error handlers for any application functionality that involves setting a property or calling a method of OPC Historical Data Access Automation Objects. The process of designing an error handler involves three steps:
1.
Set, or enable, an error trap by telling the application where to branch to (which error-handling routine to execute) when an error occurs.
The On Error statement enables the trap and directs the application to the label marking the beginning of the error-handling routine.
2.
Write an error-handling routine that will handle errors from setting properties or from method invocation on OPC Historical Data Access Automation objects.
3.
Exit the error-handling routine.
Decide what action your application should take as a result of the error. For example, if you attempted to add a group with a duplicate name(provided from the end user), you could advise the end user that the group was not added, and to enter a different name. Your application could also take the approach of adding the group again(with a “”), letting the server generate the name.
Watching for Errors
An error trap is enabled when Visual Basic executes the On Error statement, which specifies an error handler. The error trap remains enabled while the procedure containing it is active — that is, until an Exit Sub, Exit Function, Exit Property, End Sub, End Function, or End Property statement is executed for that procedure.

To set an error trap that jumps to an error-handling routine, use a On Error GoTo line statement, where line indicates the label identifying the error-handling code.
Handling the Errors
The first step in writing an error-handling routine is adding a line label to mark the beginning of the error handling routine. The line label should have a descriptive name and must be followed by a colon.

The body of the error handling routine contains the code that actually handles the error, usually in the form of a Case or If…Then…Else statement. You need to determine which errors are likely to occur and provide a course of action for each.

The Number property of the Err object contains a numeric code representing the most recent run-time error.

The error number from the Number property on the Err object contains the value that you would call GetErrorString with to covert the error number into a readable string.
A Sample OPC Automation Error Code Fragment

Dim AnOpcServer As OPCHDAServer

Private Sub Command1_Click()

On Error GoTo testerror

Set AnOpcServer = New OPCHDAServer

‘ assuming fuzz does’nt exist so the connect fails and your

‘VB code goes to the label testerror

AnOpcServer.Connect ("fuzz")

Time = AnOpcServer.CurrentTime

Debug.Print Time

testerror:

Debug.Print Err.Number

End Sub
7 Appendix B - OPC HDA Automation IDL Specification
/* __

 OPCHDAAuto.idl

 OPC HDA Automation 1.0 interfaces.

 __

 This file will be processed by the MIDL tool to produce the

 type library (OPCHDAAuto.tlb) and marshalling code.

 __

*/

import "oaidl.idl";

import "ocidl.idl";

interface IOPCHDAAutoServer;

interface IOPCHDAItems;

interface OPCHDAItem;

interface OPCHDABrowser;

[

 uuid(0C678470-BCD7-11d4-9E70-00B0D060205F),

 version(1.0),

 helpstring("OPC HDA Automation 1.0")

]

library OPCHDAAutomation

{

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 enum OPCHDAServerStatus { OPCHDAUp = 1, OPCHDADown, OPCHDAIndeterminate };

 enum OPCHDAOperatorCode { OPCHDAEqual = 1, OPCHDALess, OPCHDALessEqual, OPCHDAGreater, OPCHDAGreaterEqual };

 enum OPCHDAEditType { OPCHDAInsert = 1, OPCHDAReplace, OPCHDAInsertReplace, OPCHDADelete, OPCHDAAnnotate };

 enum OPCHDAErrors {

 OPCHDANoData = 0x40041002L,

 OPCHDAMoreData = 0x40041003L,

 OPCHDACurrentValue = 0x40041005L,

 OPCHDAExtraData = 0x40041006L,

 OPCHDAInserted = 0x4004100EL,

 OPCHDAReplaced = 0x4004100FL,

 OPCHDANoFilter = 0x80041007L,

 OPCHDAMaxExceeded = 0xC0041001L,

 OPCHDAUnknownAttrID = 0xC0041008L,

 OPCHDANotAvail = 0xC0041009L,

 OPCHDAInvalidDataType = 0xC004100AL,

 OPCHDADataExists = 0xC004100BL,

 OPCHDAInvalidAttrID = 0xC004100CL,

 OPCHDAInvalidAggregate = 0xC0041004L };

 enum OPCHDAAggregate {

 OPCHDANoAggregate = 0,

 OPCHDAInterpolative,

 OPCHDATotal,

 OPCHDAAverage,

 OPCHDATimeAverage,

 OPCHDACount,

 OPCHDAStDev,

 OPCHDAMinimumActualTime,

 OPCHDAMinimum,

 OPCHDAMaximumActualTime,

 OPCHDAMaximum,

 OPCHDAStart,

 OPCHDAEnd,

 OPCHDADelta,

 OPCHDARegSlope,

 OPCHDARegConst,

 OPCHDARegDev,

 OPCHDAVariance,

 OPCHDARange,

 OPCHDADurationGood,

 OPCHDADurationBad,

 OPCHDAPercentGood,

 OPCHDAPercentBad,

 OPCHDAWorstQuality,

 OPCHDAAnnotations };

 enum OPCHDAQuality {

 OPCHDAQualityExtraData = 0x00010000,

 OPCHDAQualityInterpolated = 0x00020000,

 OPCHDAQualityRaw = 0x00040000,

 OPCHDAQualityCalculated = 0x00080000,

 OPCHDAQualityNoBound = 0x00100000,

 OPCHDAQualityNoData = 0x00200000,

 OPCHDAQualityDataLost = 0x00400000,

 OPCHDAQualityConversion = 0x00800000 };

 enum OPCHDAAttribute {

 OPCHDADataType = 0x01,

 OPCHDADescription = 0x02,

 OPCHDAEngUnits = 0x03,

 OPCHDAStepped = 0x04,

 OPCHDAArchiving = 0x05,

 OPCHDADeriveEquation = 0x06,

 OPCHDANodeName = 0x07,

 OPCHDAProcessName = 0x08,

 OPCHDASourceName = 0x09,

 OPCHDASourceType = 0x0a,

 OPCHDANormalMaximum = 0x0b,

 OPCHDANormalMinimum = 0x0c,

 OPCHDAItemID = 0x0d,

 OPCHDAMaxTimeInt = 0x0e,

 OPCHDAMinTimeInt = 0x0f,

 OPCHDAExceptionDev = 0x10,

 OPCHDAExceptionDevType = 0x11,

 OPCHDAHighEntryLimit = 0x12,

 OPCHDALowEntryLimit = 0x13 };

/* __

*/

 [

 object,

 uuid(0C678471-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("OPC HDA Automation Server"),

 pointer_default(unique)

]

 interface IOPCHDAAutoServer : IDispatch

 {

 [propget, helpstring("Time the server started")]

 HRESULT StartTime([out, retval] DATE * StartTime);

 [propget, helpstring("Current time at the server location")]

 HRESULT CurrentTime([out, retval] DATE * CurrentTime);

 [propget, helpstring("Maximum number of values that can be returned on a per item basis.")]

 HRESULT MaxReturnValues([out, retval] LONG * MaxReturnValues);

 [propget]

 HRESULT MajorVersion([out, retval] short * MajorVersion);

 [propget]

 HRESULT MinorVersion([out, retval] short * MinorVersion);

 [propget]

 HRESULT BuildNumber([out, retval] short * BuildNumber);

 [propget, helpstring("Server vendor information")]

 HRESULT VendorInfo([out, retval] BSTR * VendorInfo);

 [propget, helpstring("Returns an OPCHDAServerStatus")]

 HRESULT HistorianStatus([out, retval] LONG * HistorianStatus);

 [propget, helpstring("Explains historian status when indeterminate.")]

 HRESULT StatusString([out, retval] BSTR * StatusString);

 [propget, helpstring("Returns this server's name")]

 HRESULT ServerName([out, retval] BSTR * ServerName);

 [propget, helpstring("Returns this server's node")]

 HRESULT ServerNode([out, retval] BSTR * ServerNode);

 [propget, helpstring("Identify the client")]

 HRESULT ClientName([out, retval] BSTR * ClientName);

 [propput]

 HRESULT ClientName([in] BSTR ClientName);

 [propget]

 HRESULT LocaleID([out, retval] LONG * LocaleID);

 [propput]

 HRESULT LocaleID([in] LONG LocaleID);

[propget]

 HRESULT CanSyncInsert([out, retval] BOOL * CanSyncInsert);

[propget]

 HRESULT CanSyncReplace([out, retval] BOOL * CanSyncReplace);

[propget]

 HRESULT CanSyncInsertReplace([out, retval] BOOL * CanSyncInsertReplace);

[propget]

 HRESULT CanSyncDeleteRaw([out, retval] BOOL * CanSyncDeleteRaw);

[propget]

 HRESULT CanSyncDeleteAtTime([out, retval] BOOL * CanSyncDeleteAtTime);

[propget]

 HRESULT CanSyncReadAnnotations([out, retval] BOOL * CanSyncReadAnnotations);

[propget]

 HRESULT CanSyncInsertAnnotations([out, retval] BOOL * CanSyncInsertAnnotations);

[propget]

 HRESULT CanAsyncInsert([out, retval] BOOL * CanAsyncInsert);

[propget]

 HRESULT CanAsyncReplace([out, retval] BOOL * CanAsyncReplace);

[propget]

 HRESULT CanAsyncInsertReplace([out, retval] BOOL * CanAsyncInsertReplace);

[propget]

 HRESULT CanAsyncDeleteRaw([out, retval] BOOL * CanAsyncDeleteRaw);

[propget]

 HRESULT CanAsyncDeleteAtTime([out, retval] BOOL * CanAsyncDeleteAtTime);

[propget]

 HRESULT CanAsyncReadAnnotations([out, retval] BOOL * CanAsyncReadAnnotations);

[propget]

 HRESULT CanAsyncInsertAnnotations([out, retval] BOOL * CanAsyncInsertAnnotations);

 [propget, id(DISPID_VALUE), helpstring("The collection of OPCHDAItem Objects")]

 HRESULT OPCHDAItems([out, retval] IOPCHDAItems ** ppOPCHDAItems);

 [helpstring("Returns an array of OPC HDA server names, optionally on another node")]

 HRESULT GetOPCHDAServers(

 [in, optional] VARIANT Node,

 [out, retval] VARIANT * OPCHDAServers);

 [helpstring("Connect to a named OPC HDA server")]

 HRESULT Connect(

 [in] BSTR ProgID,

 [in, optional] VARIANT Node);

 [helpstring("End connection with OPC HDA server")]

 HRESULT Disconnect();

 [helpstring("Convert an error code to a descriptive string")]

 HRESULT GetErrorString(

 [in] LONG ErrorCode,

 [out, retval] BSTR * ErrorString);

 [helpstring("The locales supported by this server")]

 HRESULT QueryAvailableLocaleIDs(

 [out, retval] VARIANT * LocaleIDs);

 HRESULT GetItemAttributes(

 [out] LONG * Count,

 [out] SAFEARRAY(LONG) * AttributeIDs,

 [out] SAFEARRAY(BSTR) * Names,

 [out] SAFEARRAY(BSTR) * Descriptions,

 [out] SAFEARRAY(SHORT) * DataTypes);

 HRESULT GetAggregates(

 [out] LONG * Count,

 [out] SAFEARRAY(LONG) * AggregateIDs,

 [out] SAFEARRAY(BSTR) * Names,

 [out] SAFEARRAY(BSTR) * Descriptions);

 HRESULT CreateBrowser(

 [in, defaultvalue(0)] LONG NumCriteria,

 [in, optional] VARIANT AttributeIDs,

 [in, optional] VARIANT OperatorCodes,

 [in, optional] VARIANT Filters,

 [out, optional] VARIANT * Errors,

 [out, retval] OPCHDABrowser ** ppOPCHDABrowser);

 };

/* __

*/

 [

 uuid(0C678472-BCD7-11d4-9E70-00B0D060205F),

 helpstring("OPC HDA Automation Server Events")

]

 dispinterface _IOPCHDAAutoServerEvents

 {

 properties:

 methods:

[id(1)]

 HRESULT HDAServerShutDown(

 [in] BSTR Reason);

 };

/* __

*/

 [

 object,

 uuid(0C678473-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("Collection of OPC HDA Item objects"),

 pointer_default(unique)

]

 interface IOPCHDAItems : IDispatch

 {

 [propget, helpstring("Returns the parent OPCHDAServer object")]

 HRESULT Parent([out, retval] IOPCHDAAutoServer ** ppParent);

 [propget, helpstring("Number of items in the collection")]

 HRESULT Count([out, retval] LONG * Count);

 [propget, restricted, id(DISPID_NEWENUM)]

 HRESULT _NewEnum([out, retval] IUnknown ** ppUnk);

 [id(DISPID_VALUE), helpstring("Returns an OPCItem by index (starts at 1)")]

 HRESULT Item(

 [in] VARIANT ItemSpecifier,

 [out, retval] OPCHDAItem ** ppItem);

 [helpstring("Returns an OPCHDAItem specified by server handle")]

 HRESULT GetOPCHDAItem(

 [in] LONG ServerHandle,

 [out, retval] OPCHDAItem ** ppItem);

 [helpstring("Adds an OPCHDAItem object to the collection")]

 HRESULT AddItem(

 [in] BSTR ItemID,

 [in] LONG ClientHandle,

 [out, retval] OPCHDAItem ** ppItem);

 [helpstring("Adds OPCHDAItem objects to the collection")]

 HRESULT AddItems(

 [in] LONG NumItems,

 [in] SAFEARRAY(BSTR) * ItemIDs,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [out] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors);

 [helpstring("Removes OPCHDAItem objects from the collection")]

 HRESULT Remove(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors);

 [helpstring("Removes all OPC HDA items")]

 HRESULT RemoveAll();

 [helpstring("Validates OPC HDA item ID's.")]

 HRESULT Validate(

 [in] LONG NumItems,

 [in] SAFEARRAY(BSTR) * ItemIDs,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadRaw(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumValues,

 [in] BOOL Bounds,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(VARIANT) * ItemValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadProcessed(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] DATE ResampleInterval,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [out] SAFEARRAY(VARIANT) * ItemValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadAtTime(

 [in] LONG NumTimeStamps,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(VARIANT) * ItemValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadModified(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumValues,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(VARIANT) * ItemValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadAttribute(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG ServerHandle,

 [in] LONG NumAttributes,

 [in] SAFEARRAY(LONG) * AttributeIDs,

 [out] SAFEARRAY(VARIANT) * AttributeValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncInsert(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReplace(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncInsertReplace(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncDeleteRaw(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncDeleteAtTime(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncReadAnnotations(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(VARIANT) * AnnotationValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT SyncInsertAnnotations(

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * AnnotationValues,

 [out] SAFEARRAY(LONG) * Errors);

 HRESULT AsyncReadRaw(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumValues,

 [in] BOOL Bounds,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncAdviseRaw(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in] DATE UpdateInterval,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncReadProcessed(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] DATE ResampleInterval,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncAdviseProcessed(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in] DATE ResampleInterval,

 [in] LONG NumIntervals,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncReadAtTime(

 [in] LONG TransactionID,

 [in] LONG NumTimeStamps,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncReadModified(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumValues,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncReadAttribute(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG ServerHandle,

 [in] LONG NumAttributes,

 [in] SAFEARRAY(LONG) * AttributeIDs,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncCancelRead(

 [in] LONG CancelID);

 HRESULT AsyncInsert(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncReplace(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncInsertReplace(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * DataValues,

 [in] SAFEARRAY(LONG) * Qualities,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncDeleteRaw(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncDeleteAtTime(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncCancelUpdate(

 [in] LONG CancelID);

 HRESULT AsyncReadAnnotations(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncInsertAnnotations(

 [in] LONG TransactionID,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [in] SAFEARRAY(VARIANT) * AnnotationValues,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncCancelAnnotations(

 [in] LONG CancelID);

 HRESULT AsyncPlaybackRaw(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] LONG NumValues,

 [in] DATE UpdateDuration,

 [in] DATE UpdateInterval,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncPlaybackProcessed(

 [in] LONG TransactionID,

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] DATE ResampleInterval,

 [in] LONG NumIntervals,

 [in] DATE UpdateInterval,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ServerHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [out] SAFEARRAY(LONG) * Errors,

 [out, retval] LONG * CancelID);

 HRESULT AsyncCancelPlayback(

 [in] LONG CancelID);

 };

/* __

*/

 [

 uuid(0C678474-BCD7-11d4-9E70-00B0D060205F),

 helpstring("OPC HDA Item Events")

]

 dispinterface _IOPCHDAItemEvents

 {

 properties:

 methods:

[id(1)]

 HRESULT DataChange(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [in] SAFEARRAY(VARIANT) * ItemValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(2)]

 HRESULT AsyncReadComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [in] SAFEARRAY(VARIANT) * ItemValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(3)]

 HRESULT AsyncReadModifiedComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT) * ItemValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(4)]

 HRESULT AsyncReadAttributesComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG ClientHandle,

 [in] LONG NumAttributes,

 [in] SAFEARRAY(LONG) * AttributesIDs,

 [in] SAFEARRAY(VARIANT) * AttributeValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(5)]

 HRESULT AsyncReadAnnotationsComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(VARIANT) * AnnotationValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(6)]

 HRESULT AsyncInsertAnnotationsComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Errors);

[id(7)]

 HRESULT Playback(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Aggregates,

 [in] SAFEARRAY(VARIANT) * ItemValues,

 [in] SAFEARRAY(LONG) * Errors);

[id(8)]

 HRESULT AsyncUpdateComplete(

 [in] LONG TransactionID,

 [in] LONG Status,

 [in] LONG NumItems,

 [in] SAFEARRAY(LONG) * ClientHandles,

 [in] SAFEARRAY(LONG) * Errors);

[id(9)]

 HRESULT AsyncCancelComplete(

 [in] LONG TransactionID);

 };

/* __

*/

 [

 object,

 uuid(0C678475-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("OPC HDA Item"),

 pointer_default(unique)

]

 interface OPCHDAItem : IDispatch

 {

 [propget, helpstring("Returns the parent OPCHDAServer object")]

 HRESULT Parent([out, retval] IOPCHDAAutoServer ** ppParent);

 [propget]

 HRESULT ClientHandle([out, retval] LONG * ClientHandle);

 [propget]

 HRESULT ServerHandle([out, retval] LONG * ServerHandle);

 [propget]

 HRESULT ItemID([out, retval] BSTR * ItemID);

 HRESULT ReadRaw(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in, defaultvalue(0)] LONG NumValues,

 [in, defaultvalue(FALSE)] BOOL Bounds,

 [out, retval] VARIANT * ItemValues);

 HRESULT ReadProcessed(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime,

 [in] DATE ResampleInterval,

 [in] LONG Aggregate,

 [out, retval] VARIANT * ItemValues);

 HRESULT ReadAtTime(

 [in] LONG NumTimeStamps,

 [in] SAFEARRAY(DATE) * TimeStamps,

 [out, retval] VARIANT * ItemValues);

 HRESULT Update(

 [in] DATE TimeStamp,

 [in] VARIANT DataValue,

 [in] LONG Quality,

 [in, defaultvalue(OPCHDAInsertReplace)] LONG EditType);

 HRESULT DeleteRaw(

 [in, out] VARIANT * StartTime,

 [in, out] VARIANT * EndTime);

 };

/* __

*/

 [

 object,

 uuid(0C678476-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("OPC HDA Browser"),

 pointer_default(unique)

]

 interface OPCHDABrowser : IDispatch

 {

 [propget]

 HRESULT CurrentPosition([out, retval] BSTR * CurrentPosition);

 [propget]

 HRESULT OPCHDABranches([out, retval] VARIANT * OPCHDABranches);

 [propget]

 HRESULT OPCHDALeaves([out, retval] VARIANT * OPCHDALeaves);

 [propget]

 HRESULT OPCHDAItems([out, retval] VARIANT * OPCHDAItems);

 HRESULT MoveUp();

 HRESULT MoveToRoot();

 HRESULT MoveDown(

 [in] BSTR BranchName);

 HRESULT MoveTo(

 [in] BSTR NewPosition);

 HRESULT GetItemID(

 [in] BSTR ItemName,

 [out, retval] BSTR * ItemID);

 };

/* __

*/

 [

 object,

 uuid(0C678477-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("OPC HDA Value"),

 pointer_default(unique)

]

 interface OPCHDAValue : IDispatch

 {

 [propget]

 HRESULT TimeStamp([out, retval] DATE * TimeStamp);

 [propget, id(DISPID_VALUE)]

 HRESULT DataValue([out, retval] VARIANT * DataValue);

 [propget]

 HRESULT Quality([out, retval] LONG * Quality);

 };

/* __

*/

 [

 object,

 uuid(0C678478-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("OPC HDA Entry"),

 pointer_default(unique)

]

 interface OPCHDAEntry : OPCHDAValue

 {

 [propget]

 HRESULT EntryTime([out, retval] DATE * EntryTime);

 [propget]

 HRESULT EntryType([out, retval] LONG * EntryType);

 [propget]

 HRESULT User([out, retval] BSTR * User);

 };

/* __

*/

 [

 object,

 uuid(0C678479-BCD7-11d4-9E70-00B0D060205F),

 dual,

 helpstring("Collection of OPC HDA Value or Entry objects"),

 pointer_default(unique)

]

 interface OPCHDAHistory : IDispatch

 {

 [propget, helpstring("Number of items in the collection")]

 HRESULT Count([out, retval] LONG * Count);

 [propget, restricted, id(DISPID_NEWENUM)]

 HRESULT _NewEnum([out, retval] IUnknown ** ppUnk);

 [id(DISPID_VALUE), helpstring("Returns an item by index (starts at 1)")]

 HRESULT Item(

 [in] VARIANT ItemSpecifier,

 [out, retval] OPCHDAValue ** ppValue);

 };

/* __

*/

 [

 uuid(0C67847E-BCD7-11d4-9E70-00B0D060205F),

 helpstring("OPC HDA Automation Server Object")

]

 coclass OPCHDAServer

 {

 [default] interface IOPCHDAAutoServer;

 [default, source] dispinterface _IOPCHDAAutoServerEvents;

 };

/* __

*/

 [

 uuid(0C67847F-BCD7-11d4-9E70-00B0D060205F),

 helpstring("OPC HDA Automation Items Collection")

]

 coclass OPCHDAItems

 {

 [default] interface IOPCHDAItems;

 [default, source] dispinterface _IOPCHDAItemEvents;

 };

};

8 Appendix C- Notes On Automation Data Types
The OPC Custom Interface allows servers to support data types including VT_I1, VT_UI2, VT_UI4, as well as arrays of these same data types. For a client that is developed in C++, using these data types is very straight forward, but for an automation client application, these data types are not natively supported. Therefore, we have chosen to provide a logical mapping and conversion to those data types which are more native to automation client applications.

The automation interface shall provide the standard automation data types therefore the requested data types that the automation client requests will be those that are natively supported by the automation applications. The problem comes in, when the automation client either does not specify a requested data type, or the server application rejects the requested data type, and the data is then returned in the servers native canonical data type.

The following is the conversion approach that the automation interface (and corresponding implementation) should provide to facilitate providing data values in the data type representation most suitable for automation applications. A value in the canonical data types representation will be converted to the automation data types according to the table below.

	CANONICAL DATA TYPE
	 AUTOMATION DATA TYPE

	 VT_I1

	 VT_I2

	 VT_UI2

	 VT_I4

	 VT_UI4

	 VT_R8 (or VT_CY)

	 VT_ARRAY | VT_I1

	 VT_ARRAY | VT_I2

	 VT_ARRAY | VT_UI2

	 VT_ARRAY | VT_I4

	 VT_ARRAY | VT_UI4

	 VT_ARRAY | VT_R8 (or VT_CY)

OPCHDAServer

OPCHDAItems�(collection)

OPCHDAItem

OPCHDABrowser

OPCHDAValue

OPCHDAHistory

(collection)

OPCHDAValue

� EMBED Word.Picture.8 ���

2

_953964303.doc

�

_958369224.doc

Automation Client

OPC Automation Wrapper

OPC Custom Interface Server

COM / DCOM

